
SORBONNE UNIVERSITÉ

ÉCOLE DOCTORALE DE SCIENCES
MATHÉMATIQUES DE PARIS CENTRE

ED 386

HABILITATION À DIRIGER
DES RECHERCHES

Mention : Mathématiques

Présentée et soutenue par

David Burguet

Expansivité et distorsion bornée
des systèmes dynamiques Cr

Expansiveness and bounded distorsion
of Cr dynamical systems

préparée au LPSM
soutenue le

Jury :

Rapporteurs : - Mike Boyle
- Sylvain Crovisier
- Yosef Yomdin

Président : -
Examinateurs : - Marie-Claude Arnaud

- Jean-René Chazottes
- François Ledrappier
- Philippe Thieullen





i

Remerciements

J’ai longtemps attendu une nouvelle réforme de l’enseignement supérieur, qui
m’aurait dispensé de passer l’habilitation. Alexandre Delplanque m’ayant demandé
d’encadrer sa thèse, je me retrouve aujourd’hui au pied du mur. C’est l’occasion de
remercier les personnes et les institutions qui m’ont épaulé.

Tout d’abord je remercie Mike Boyle, Yosi Yomdin et Sylvain Crovisier, pour
avoir accepté de rapporter ce mémoire. Celui-ci a été rédigé sur mesure : Partie 1
pour Mike, partie 2 pour Yosi et partie 3 pour Sylvain,... mais il fallait bien rap-
porter les trois parties. Je suis très honoré de la présence dans mon jury de François
Ledrappier, Philippe Thieullen, Marie-Claude Arnaud et Jean-René Chazottes. Je
voudrais aussi remercier mes collaborateurs, en particulier Tomasz dont les travaux
m’ont par ailleurs fortement influencé et plus récemment Ruxi, ainsi que mon an-
cien directeur, Jérôme, qui m’a introduit à des thématiques de recherche qui me
passionnent toujours.

A la sortie des réunions de comités de sélection, je réalise la chance d’avoir eu
un parcours quasi linéaire. Je souhaite remercier les institutions dans lesquelles
j’ai effectué mes recherches : le CNRS, le département mathématique de l’Ecole
Polytechnique et de l’ENS Cachan et enfin le LPSM. Je voudrais par la même
occasion saluer le travail des services administratifs et informatiques, dont j’ai pu
bénéficier.

Je voudrais enfin remercier Irène pour son soutien inconditionnel et je m’excuse
auprès de Marion, Lucien et Héloïse, pour les moments où Papa semble subitement
ailleurs...





Contents

List of main presented works v

Introduction (in french) vii

I Generators in topological dynamics 1

1 Entropy and Expansiveness 3
1.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Strong expansiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Entropy expansiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Periodic expansiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Symbolic extensions 9
2.1 Problematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Entropic characterization of symbolic extensions . . . . . . . . . . . . 9
2.3 Symbolic extensions for flows . . . . . . . . . . . . . . . . . . . . . . 11

3 Perfect generators 13
3.1 Ergodic generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Symbolic extension with an embedding . . . . . . . . . . . . . . . . . 14
3.3 Asymptotic expansive systems . . . . . . . . . . . . . . . . . . . . . . 15
3.4 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

II Reparametrization lemmas 17

4 Yomdin’s theory 19
4.1 The Algebraic Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Local complexity of Cr maps . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Dynamical reparametrization lemma . . . . . . . . . . . . . . . . . . 21

4.3.1 Non autonomous Cr dynamical version . . . . . . . . . . . . . 21
4.3.2 Dynamical reparametrization lemma for C∞ smooth systems 22

5 h-expansiveness of C∞ smooth systems 25
5.1 Shub’s entropy conjecture . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Volume growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Local volume growth and tail entropy of smooth systems . . . . . . . 27
5.4 Rate of convergence of the tail entropy . . . . . . . . . . . . . . . . 28



iv Contents

6 Another approach to control the geometry of curves 31
6.1 Bounded curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Image of a bounded curve . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Dynamical reparametrization lemma . . . . . . . . . . . . . . . . . . 34

6.3.1 Local version . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3.2 Global version . . . . . . . . . . . . . . . . . . . . . . . . . . 35

III Applications to the ergodic theory of Cr smooth systems 39

7 Measures of maximal entropy in small dimensions 41
7.1 Measures of maximal entropy for Cr, r ≥ 1, interval maps with large

entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Measures of maximal entropy for Cr for surface diffeomorphisms with

large entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Equidistribution of periodic points . . . . . . . . . . . . . . . . . . . 44

8 Symbolic extensions in intermediate smoothness 47
8.1 The case of interval maps . . . . . . . . . . . . . . . . . . . . . . . . 47
8.2 Symbolic extensions for Cr surface diffeomorphisms . . . . . . . . . 48
8.3 ... in higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 SRB and physical measures 51
9.1 SRB and physical measures . . . . . . . . . . . . . . . . . . . . . . . 51
9.2 Entropy and exponents physically . . . . . . . . . . . . . . . . . . . . 52
9.3 SRB measures for Cr surface diffeomorphisms . . . . . . . . . . . . 53

Bibliography 55



List of main presented works

• Symbolic extensions and uniform generators for topological
regular flows. J. Differential Equations, 267(7):4320–4372, 2019.

• Uniform generators, symbolic extensions with an embedding,
and structure of periodic orbits. (with Tomasz Downarowicz) J.
Dynam. Differential Equations, 31(2):815–852, 2019.

• Asymptotic h-expansiveness rate of C∞ maps. (with Gang Liao,
and Jiagang Yang) Proc. Lond. Math. Soc. (3), 111(2):381–419, 2015.

• Periodic expansiveness of smooth surface diffeomorphisms and
applications. J. Eur. Math. Soc. (JEMS), 22(2):413–454, 2020.

• Symbolic extensions in intermediate smoothness on surfaces.
Ann. Sci. Éc. Norm. Supér. (4), 45(2):337–362, 2012.

• Entropy of physical measures for C∞ dynamical systems. Comm.
Math. Phys., 375(2):1201–1222, 2020.

• SRB measures for C∞ surface diffeomorphisms, arxiv 2021.





Introduction

Dans ce mémoire je présente une partie de mes travaux de recherche
reliée à l’étude des systèmes dynamiques de classe Cr et de leurs modèles
symboliques, du point de vue de l’entropie.

L’entropie d’un système estime sa complexité en comptant le nombre
d’orbites vue par la topologie (entropie topologique) ou par une mesure
invariante (entropie de Kolmogorov). Le principe variationnel énonce que
l’entropie topologique est le supremum des entropies de Kolmogorov des
mesures invariantes. Un système topologique (X,T ) est expansif lorsqu’il
existe une échelle (uniforme) à laquelle on peut distinguer deux orbites
quelconques différentes. L’expansivité et certaines de ses formes faibles
entraîne l’existence de mesures d’entropie maximale. Dans les années
2000, Boyle et Downarowicz ont cherché à caractériser les systèmes dy-
namiques topologiques (X,T ) pouvant être codés par des sous-décalages
à alphabet fini (pas nécessairement de type fini). Ils ont développé pour
cela une nouvelle théorie de l’entropie, qui permet de relier l’existence (et
l’entropie) de tels codages à des propriétés d’expansivité entropique de (X,T ).

Lorsque l’espace des phases X est une variété compacte lisse, la mesure
de Lebesgue est une mesure de référence naturelle pour laquelle on cherche
à décrire le comportement statistique du système : quelle est la limite des
mesures empiriques µxn = 1

n

∑
0≤k<n δTkx pour Lebesgue presque tout x ∈

X? Pour une mesure invariante ν, l’ensemble des points x pour lesquels µxn
converge vers ν est appelé le bassin de ν. Une mesure physique est une mesure
dont le bassin est de mesure de Lebesgue positive. Les mesures ergodiques
de Sinai-Ruelle-Bowen (SRB) hyperboliques sont des exemples importants de
mesures physiques. Une propriété essentielle dans la construction de mesures
de Sinai-Ruelle-Bowen pour un système différentiable (M, f) de classe C2 est
la propriété de distorsion bornée : si Dn est un disque "instable" tels que Dn,
f(Dn), ... , fn(Dn) restent bornées alors pour une constante C indépendante
de n on a

∀x, y ∈ Dn,
Jacx(f

n|Dn)

Jacy(fn|Dn)
< C.

En théorie ergodique des systèmes différentiables, deux classes de mesures
invariantes sont ainsi particulièrement étudiées : les mesures d’entropie max-
imale et les mesures de Sinai-Ruelle-Bowen. Les systèmes dynamiques uni-
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formément hyperboliques, qui sont désormais bien compris, satisfont les pro-
priétés suivantes :

• ils peuvent être codés par un sous-décalage de type fini à l’aide de par-
titions de Markov,

• ils admettent un nombre fini de mesures ergodiques d’entropie maximale,

• les points périodiques s’équidistribuent le long des mesures d’entropie
maximales,

• ils admettent un nombre fini de mesures ergodiques de Sinai-Ruelle-
Bowen hyperboliques dont les bassins forment un ensemble de mesure
de Lebesgue totale.

Dans les années 80, Yomdin a résolu la conjecture de Shub pour les
systèmes C∞ en montrant que la croissance locale des volumes est nulle pour
ces systèmes. La preuve de Yomdin s’appuie sur des outils de géométrie semi-
algébrique. Il montre que les systèmes Cr satisfont certaines propriétés faibles
d’expansivité, qui se renforcent avec la régularité r. J’ai établi différents
résultats dans ce sens, en particulier l’existence d’extensions symboliques en
régularité intermédiaire (Théorème 21) et l’équidistribution des mesures péri-
odiques le long des mesures d’entropie maximale en régularité C∞ (Théorème
18), pour les difféomorphismes de surface. En appliquant la théorie de
Yomdin à la différentielle et non pas au système lui-même j’ai obtenu des
propriétés de distorsion bornée qui permettent de comparer l’entropie et les
exposants de Lyapunov d’un point de vue physique pour les systèmes C∞ en
toute dimension (Théorème 25). Plus récemment en utilisant ces propriétés
de distorsion bornée j’ai montré pour les difféomorphismes de surface (M, f)
de classe Cr, que Lebesgue presque tout point avec un exposant supérieur à
log ‖df‖∞

r
est dans le bassin d’une mesure de Sinai-Ruelle-Bowen (Théorème 27).

Ce manuscrit est divisé en trois parties (une par rapporteur!). Dans la pre-
mière, nous rappelons quelques notions d’expansivité puis nous évoquons la
théorie des extensions symboliques pour les systèmes discrets. Nous présen-
tons enfin quelques contributions au sujet : tout d’abord une extension de
cette théorie aux flots, puis une notion de générateurs qui permet de voir la
théorie des extensions symboliques comme un problème de générateurs.

Dans la seconde partie nous rappelons l’approche de Yomdin pour montrer
la conjecture de Shub. Un raffinement de cette théorie nous a permis d’obtenir
des estimées quantitatives de l’expansivité entropique dans les classes ultrad-
ifférentiables (Théorème 12). Nous présentons enfin une approche alternative
à la théorie de Yomdin en dimension 1 qui permet un contrôle plus fin de la
géométrie des courbes sous l’action d’un difféomorphisme Cr.
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La dernière partie est consacrée aux applications à la théorie ergodique des
systèmes de classe Cr avec r > 1 déjà évoquées :

• mesures d’entropie maximale en dimension 1 et 2,

• extensions symboliques en régularité intermédiaire,

• mesures physiques pour les difféomorphismes de surface.





Part I

Generators in topological
dynamics





Chapter 1

Entropy and Expansiveness

Related personal works : [28],[31]

Contents
1.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Strong expansiveness . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Entropy expansiveness . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Periodic expansiveness . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Entropy

The entropy of a dynamical system quantifies the dynamical complexity by
counting the number of orbits that can be differentiated at arbitrarily small
scales. Depending on the structure of the system (topological or measured),
we distinguish two notions of entropy: the topological entropy introduced by
Adler, Conrad and Weiss [1] and the measured entropy due to Kolmogorov
[64].

When the system is topological, the scale is defined by an open cover
(topological approach of Adler, Konheim and McAndrew) or by a positive
real number when the phase space is endowed with a metric (Bowen metric
approach [13]). When the scale goes to zero, the Bowen entropy coincides
with the topological definition (for the topology induced by the metric).

We recall here Bowen’s definition. For a compact metric space (X, d) and
a continuous application T : X 	, we define for any n ∈ N∗ the dynamical
distance dn as follows:

∀x, y ∈ X, dn(x, y) = max
0≤k<n

d(T kx, T ky).

We will also write Bn(x, ε) to denote the ball for the metric dn of radius ε > 0
centered at x ∈ X. Such dynamical balls are called (n, ε)-balls. Finally for
Y ⊂ X, we let rn(Y, ε) be the minimal number of (n, ε)-balls needed to cover
Y .

The topological entropy htop(T ) of (X,T ) is the exponential growth
rate in n of the minimal cardinality of a cover by dn-balls of arbitrarily small
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radius:
htop(T ) = lim

ε→0
htop(T, ε)

with
htop(T, ε) = lim sup

n→+∞

1

n
log rn(X, ε).

When the dynamical system is invertible, we can define the bilateral dy-
namical distances dn:

∀x, y ∈ X, dn(x, y) = max
|k|<n

d(T kx, T ky)

and the associated dynamical balls Bn(x, ε).
For measure preserving system systems (X,B, f, µ), the entropy may be

defined with finite measurable partitions following Kolmogorov [64] (see also
[84]). For such a partition P , let P n =

∨
0≤k<n f

−kP be the n-iterated parti-
tion and P n(x) be the atom of P n containing a point x of X. We then define
the Kolmogorov entropy h(µ) as follows:

h(µ) = hf (µ) = sup
P
h(µ, P )

with
h(µ, P ) = lim

n

1

n

∫
− log µ(P n(x)) dµ(x).

The Kolmogorov entropy and the topological entropy are related by a
variational principle [51, 57, 56]:

htop(T ) = sup
µ∈M(X,T )

h(µ),

where M(X,T ) is the set of T -invariant Borel probability measures. An
invariant measure realizing the supremum is called a maximal measure or a
measure of maximal entropy. Such measures do not always exist. An abstract
example of a topological system without maximal measure may be given as
follows. Consider a sequence (Xn, Tn)n∈N of topological systems, such that the
topological entropy htop(Tn) goes (strictly) increasingly in n to some 0 < a <
+∞. Let X = {∗} ∪

∐
nXn be the one point compactification of the Xn’s.

Then the system T : X 	 coinciding with Tn on each Xn and fixing ∗ has no
measure of maximal entropy.

1.2 Strong expansiveness

A topological system (X,T ) is said to be positively expansive, when there
exists a scale ε > 0 such that for any x ∈ X, the intersection

⋂
n∈N∗ Bn(x, ε),
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is reduced to the singleton x. In other words, all future orbits can be distin-
guished on the scale ε. In particular htop(T ) = htop(T, ε) <∞. Equivalently a
system is positively expansive when there exists a finite open cover U such that
for all x ∈ X we have

⋂
k∈N U(T kx) = {x} for some U(T kx) ∈ U containing

T kx, k ∈ N. Such a cover is then called a positive topological generator.
An invertible topological dynamical system is said to be expansive when

it satisfies the previous property where we consider bilateral dynamical balls
insteal of unilateral ones, i.e. for any x ∈ X the intersection

⋂
n∈N∗ Bn(x, ε) is

reduced to {x}. One may also define topological generators as in the positive
case. Symbolic dynamical systems, which are given by the shift on sequences
with values in a finite alphabet, are expansive. Among differentiable systems
uniformly hyperbolic diffeomorphisms are (robustly) expansive and they are
almost the unique one’s [69].

The expansiveness generates constraints on the topology of X. Fathi [55]
has shown that all expansive dynamics are hyperbolic in some sense. In par-
ticular, he deduced that in any expansive system the phase space has finite
topological dimension. In the case where the dynamical system is minimal,
Mané [70] had previously shown that the system is zero-dimensional.

A zero-dimensional expansive system is topologically conjugate to a sub-
shift. Moreover Krieger [66] showed that given a zero-dimensional expansive
system (Z,R), any subshift of finite type, with larger entropy and with as
many n-periodic points for any n ∈ N∗, contained a subshift topologically
conjugate to (Z,R).

1.3 Entropy expansiveness

Bowen and Misiurewicz [13, 73] have introduced finer notions of expansiveness.
For ε > 0, we let

h∗(T, ε) := lim
δ→0

lim sup
n

1

n
sup
x∈X

log rn(Bn(x, ε), δ).

The quantity h∗(T, ε) estimates the complexity of the system which remains
in dynamical balls of size ε. The system is said to be h-expansive when there
exists ε > 0 with h∗(T, ε) = 0. By an easy compactness argument, one checks
that expansive systems are h-expansive. An example of a non expansive but
h-expansive system is the time-1 map of the geodesic flow of a surface with
negative curvature. More generally, C1 diffeomorphisms far from homoclinic
tangencies are h-expansive [67] (see also [49, 50]).

Finally, a topological system (X,T ) is said to be asymptotically h-
expansive when

h∗(T, ε)
ε→0−−→ 0.
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We will see in Chapter 5 that C∞ systems are asymptotically h-expansive but
not h-expansive in general. An important consequence of this last property
is the upper semicontinuity of the Kolmogorov entropy h : M(X,T ) → R
on the simplex of invariant probability measuresM(X,T ) equipped with the
weak-∗-topology. In particular an asymptotically h-expansive system always
admits maximal measures.

The limit h∗(T ) = limε→0 h
∗(T, ε) is a topological invariant, called the

tail entropy after Downarowicz [52]. In [28] we define a notion of robust
tail entropy. If C is a family of continuous functions of X in itself, endowed
with a topology stronger than the topology of uniform convergence (for ex-
ample for a smooth manifold X, we can consider the Cr topology on the Cr

diffeomorphisms of X), then for T ∈ C we define

h∗C(T ) = lim
ε→0

lim sup
C3S→T

h∗(S, ε).

In this framework if h∗C = supT∈C h
∗
C(T ) = 0 then the topological entropy

htop(T ) is upper semicontinuous in T ∈ C and the simplex Mmax(X,T ) ⊂
M(X) of maximal measures also varies upper semicontinuously in T ∈ C
for the Hausdorff topology on the set M(X) of probability measures of X
endowed with the weak-∗ topology.

We show for example in [28] that the setM1
k of functions f of class C1 of the

interval admitting a partition in at most k-intervals on which f is monotone
verifies h∗

M1
k

= 0. Moreover it is well known that the topological entropy of
continuous applications of the interval is lower semicontinuous [72]. It follows
that the topological entropy is continuous on M1

k . This approach gives thus
an elementary proof of this result due to Misiurewicz [74].

1.4 Periodic expansiveness

For a topological system, we introduce the notion of periodic expansiveness.
Let Per(X) be the set of periodic points of (X,T ). For a subset P of Per(X),
let Pn be the subset of n-periodic points of P for any n ∈ N∗.

When (X,T ) is expansive, one shows easily following Bowen that if the
exponential growth gP := limn

1
n

log ]Pn is well defined and is equal to the
topological entropy then any weak limit of 1

]Pn

∑
x∈Pn δx, when n goes to

infinity, is a maximal measure.
As asymptically h-expansiveness is the good generalization of expansive-

ness for the entropy, we introduced in [31] the property of periodic expan-
siveness which is adapted to the growth of periodic points. For all ε > 0, we
let

g∗P(ε) := lim sup
n

1

n
log sup

x∈X
]Pn ∩Bn(x, ε).
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The system (X,T ) is said to be asymptotically P-expansive, when

g∗P(ε)
ε→0−−→ 0.

It is shown in [31] that if gP := limk
1
nk

log ]Pnk is additionally equal to
the topological entropy, then the periodic measures equidistribute along the
maximum entropy measure, in other words any weak limit of 1

]Pnk

∑
x∈Pnk

δx,
when k goes to infinity, is a maximal measure.

When P is the set Per of all periodic points, then g∗Per is a topological
invariant playing a key role in the theory of perfect generators developed in
Chapter 3.





Chapter 2

Symbolic extensions

Related personal works : [23],[20],[29],[38]

Contents
2.1 Problematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Entropic characterization of symbolic extensions . . . . . . 9
2.3 Symbolic extensions for flows . . . . . . . . . . . . . . . . . . 11

2.1 Problematic

In the previous chapter we mentioned that an expansive zero-dimensional
topological dynamical system is topologically conjugate to a subshift over a
finite alphabet.

A zero-dimensional system (X,T ) always admits a factor given by a sub-
shift of entropy arbitrarily close to htop(T ). But does it admit a symbolic
extension, i.e. a topological extension by a subshift? What can be the en-
tropy of this subshift? A necessary condition is the finiteness of the topological
entropy, as the entropy of an extension is always larger than or equal to the
entropy of the factor, but this is not sufficient. Boyle built the first examples
of finite entropy (zero-dimensional) topological systems without symbolic ex-
tension. With Downarowicz, they relate the existence of a symbolic extension
with new entropic expansiveness properties of the system.

2.2 Entropic characterization of symbolic extensions

Let us first assume that (X,T ) is a zero-dimensional system. We consider a
sequence P = (Pk)k∈N of clopen partitions such that Pk+1 is finer than Pk for
all k and diam(Pk)

k→+∞−−−−→ 0. Then we let

hk :M(X,T )→ R+,

µ 7→ h(µ, Pk).

The sequence of functions (hk)k is nondecreasing and is converging point-
wisely to the measure theoretical entropy function h : M(X,T ) → R+. For
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a bounded function f :M(X,T )→ R+ we let f˜ be the smallest upper semi-
continuous function larger than or equal to f , i.e. f˜(µ) = lim supν→µ f(ν)
for any µ ∈ M(X,T ). A function E : M(X,T ) → R+ is called an affine
superenvelope when E is affine and satisfies

lim
k

(E + h− hk)˜ = E.

When π : (Y, S)→ (X,T ) is a symbolic extension of (X,T ) then one checks
easily that the fiber entropy function hπ :M(X,T )→ R+, defined as hπ(µ) =
supπ∗ν=µ hS(ν)− hT (µ) for any µ ∈M(X,T ), is an affine superenvelope.

Boyle and Downarowicz have shown that this property completely charac-
terizes the fiber entropy function of symbolic extensions, in particular if there
is an affine superenvelope then (X,T ) admits a symbolic extension.

Theorem 1. [16] The fiber entropy functions hπ of symbolic extensions π are
exactly the affine superenvelopes.

For a general topological system there are many ways to compute the mea-
sure theoretical entropy function h as a nondecreasing sequence of functions
(hk)k. For example we may use the formulas due to Brin-Katok, Katok or
Newhouse [18, 62, 76]. In these three cases, these sequences (hk)k are equiva-
lent in some sense and Downarowicz called them entropy structures. The
above theorem still holds true for a general system when one replaces the
entropy with respect to clopen partitions by such an entropy structure. More-
over for entropy structures, we have the following variational principle for the
tail entropy :

Theorem 2. [20, 52] For any entropy structure (hk)k of a topological system
(X,T ) we have

h∗(T ) = lim
k

sup
µ∈M(X,T )

(h− hk)(µ).

The symbolic extension π is said principal when it preserves the entropy
of measures, i.e. hπ = 0. By the above variational principle, the system
is asymptotically h-expansive if and only if the sequence hk are converging
uniformly to the entropy function h when k goes to infinity. Equivalently, the
zero function is an affine superenvelope.

Corollary 1. [17] A topological system is asymptotically h-expansive if and
only if it admits a principal symbolic extension.

The symbolic extension entropy hsex(T ) is defined as the infimum of
the topological entropy of symbolic extensions of (X,T ).
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2.3 Symbolic extensions for flows

In [29] I have developed a similar theory for flows. A topological flow without
fixed points is said to be regular. A symbolic flow (Y,Ψ) is a (regular)
suspension flow over a subshift. A symbolic extension of a topological flow
(X,Φ) is a topological extension π : (Y,Ψ)→ (X,Φ) by a symbolic flow.

Theorem 3. [29, 38] Let (X,Φ) be a continuous regular flow. Then Φ admits
a (principal) symbolic extension if and only if so does its time t-map for any
t 6= 0.

Ideas of the proof. We first build a principal extension of the flow by a sus-
pension flow over a zero-dimensional system. Then, by using Abramov’s like
formulas we relate the affine superenvelopes of the time t-map of the flow with
the affine superenvelopes of this zero-dimensional system. Finally one easily
build a symbolic extension of the suspension flow from a symbolic extension
of the discrete zero-dimensional system on the basis.

In the previous statement we can in fact always choose the roof function of
the symbolic flow constant equal to one. A topological extension π : (Y,Ψ)→
(X,Φ) is said isomorphic when π is an isomorphism between the measure
preserving systems (Y,Ψ, ν) and (X,Φ, π∗ν) for any ν ∈M(X,Φ). A discrete
system (X,T ) is said to have the small boundary property when there
is a basis of neighborhoods U with small boundary, i.e. µ(∂U) = 0 for any
µ ∈ M(X,T ). For flows, we have introduced a similar concept by working
with sections building on works of Bowen and Walters [15]. By using standard
smooth transversality argument, we proved this small flow boundary property
is satisfied for regular C2 flows with countably many periodic orbits. Recently,
building on works of Lindenstrauss [68] for discrete systems, Gutman and Shi
extended this result to C0 flows. A flow with the small flow boundary property
admits an isomorphic extension by a suspension flow over a zero-dimensional
system. In particular it follows from the asymptotic h-expansiveness of C∞

systems (see Corollary 4), that :

Corollary 2. [29] Any C∞ regular flow with countably many periodic orbits
admits an isomorphic symbolic extension.

Note that in this last statement we can not in general take the roof function
of the symbolic flow to be constant. In the aperiodic case we do not know
if one can choose this roof function to be a two step function as in famous
Rudolph’s work for ergodic flows [80].

Two topological flows (X,φ) and (Y,Ψ) are orbit equivalent when there is
a homeomorphism Λ from X onto Y mapping Φ-orbits to Ψ-orbits by preserv-
ing their orientation. For regular flows, it is well known that finiteness/nullity
of the topological entropy [77] and expansiveness [15], are invariant properties
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under orbit equivalence. This is also the case for the existence of symbolic
extensions:

Theorem 4. [29, 38] Existence of symbolic extensions, but also asymptotic
h-expansiveness, are preserved under orbit equivalence for regular flows.

The above theorem is no more true for singular flows, i.e. flows with fixed
points. In [38], we consider suspension flows over the two full shift with one
fixed point at the zero sequence 0∞. Then the existence of (principal) symbolic
extensions depends on the "flatness" of the roof function at the singularity.
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3.1 Ergodic generators

Let (X,B, f, µ) be an invertible ergodic measure preserving system. A finite
measurable partition P is called an ergodic generator when the iterated
partitions P [−n,n] =

∨
|k|≤n f

−kP , n ∈ N, generate B. In other terms, an
ergodic measure preserving system admits a generator with cardinality K
if and only if this ergodic measure preserving system is isomorphic to an
invariant ergodic measure of the full shift with K letters.

Theorem 5. [65] Any invertible ergodic non atomic measure preserving sys-
tem (X,B, f, µ) with h(µ) < +∞ admits a generator P with ]P ≤ [eh(µ)] + 1.

The idea of Krieger’s proof is to encode with markers the dynamics at
a certain scale P0 while leaving free codes at identifiable places, which we
then use to describe the dynamics at smaller scales Pk, k ∈ N. Here (Pk)k
denotes a sequence of finer and finer partitions with

∨
k Pk = B. The number

of "bits" needed for the coding at the kth-step is given by the conditional
entropy h(µ, Pk+1|Pk). As h(µ) =

∑
k h(µ, Pk+1|Pk) < +∞, we may iterate

the process and the limit defines the desired embedding of the ergodic system
into the full shift with [eh(µ)] + 1 letters.

Another way of stating Theorem 5 is to say that the full K-shift σ, K ∈
N∗, is universal in the sense that any aperiodic ergodic invertible measure
preserving system of entropy less than logK = htop(σ) is isomorphic to an
invariant measure of σ.
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A topological system satisfies a specification property when we can glue
finitely many bounded pieces of orbits. More precisely for any ε > 0 and any
finite collection of finite orbits

T a1x1, T
a1+1x1, ..., T

b1x1

· · ·

T apxp, T
ap+1xp, ..., T

bpxp

with a1 < b1 < a2 < ... < bp there exists x ∈ Y with d(T kx, T kxi) < ε
for k ∈

⋃
i[ai, bi] provided that ai+1 − bi ≥ L(bi+1 − ai+1) for some function

L = Lε.
When L is constant and independent of ε, we speak of strong specification.

If Lε verifies limn→+∞ Lε(n)/n = 0 for all ε, we say that the system has
the weak specification property. Subshifts of finite type satisfy the strong
specification property.

Generalizing a result of Quas and Soo [79] (see also [47]), we have obtained
the following result:

Theorem 6. [32] Any invertible topological system satisfying the weak speci-
fication property is universal.

We also showed a stronger topological universality property for subshifts
satisfying the strong specification property.

3.2 Symbolic extension with an embedding

Let (X,T ) be a topological invertible system. A symbolic extension π :
(Y, S) → (X,T ) is said to be with an embedding if there exists a Borel
section, i.e. a Borel map ψ : X → Y satisfying ψ ◦T = S ◦ψ and π ◦ψ = IdX .
When a system admits a principal symbolic extension, we can always choose
this extension to be aperiodic. For symbolic extensions with an embedding,
entropy is not the only constraint, one must also take into account the periodic
points.

A finite Borel measurable partition P of X is called a perfect generator
if the diameter of the iterated partitions P [−n,n] =

∨
|k|≤n T

−kP goes to 0 when
n goes to infinity. Remark that if P is moreover a clopen partition then P
is a topological generator and the system is expansive and conjugated to a
subshift. Perfect generators and symbolic extensions with an embedding are
related as follows :

Proposition 1. [35] An invertible topological system (X,T ) admits a perfect
generator if and only if it admits a symbolic extension with an embedding.
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3.3 Asymptotic expansive systems

A system is said to be asymptotically expansive when it is asymptoti-
cally h-expansive and asymptotically Per-expansive. For a topological system
(X,T ) we consider the following invariant:

gsupPer (T ) = sup
n

log ]Pern
n

.

Observe that gsupPer (T ) is finite when (X,T ) is asymptotically Per-expansive.
By adapting Krieger’s proof of ergodic generators to the topological setting,
we obtained :

Theorem 7. [27] Let (X,T ) be an invertible topological system. The following
properties are equivalent:

• (X,T ) admits a perfect generator P with null boundaries,

• (X,T ) has the small boundary property and (X,T ) is asymptotically ex-
pansive.

Moreover we can chose P with ]P ≤ emax(htop(T ),gsupPer (T )) + 1.

In this case, the symbolic extension associated to the perfect generator is
an isomorphic extension.

3.4 The general case

With Downarowicz we generalized the previous result to any topological sys-
tems with the small boundary property as follows.

Theorem 8. Let (X,T ) be an invertible topological system with the small
boundary property. The following assertions are equivalent:

• (X,T ) admits a perfect generator P ,

• (X,T ) admits a symbolic extension and gsupPer (T ) < +∞.

Moreover, in this case we can choose P with

]P ≤ emax(hsex(T )+g∗Per(T ),gsupPer (T )) + 1.

Ideas of the proof : We first prove that for an aperiodic system any affine su-
perenvelope is a the fiber entropy of a symbolic extension with an embedding.
Then we deal with the periodic case by building for any topological system
an aperiodic zero-dimensional extension of (X,T ), which is isomorphic on
aperiodic measures, while each periodic orbit of (X,T ) lifts to a collection of
odometers.
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4.1 The Algebraic Lemma

A semi-algebraic set is a subset of some Euclidean space Rd, which can be
defined by a finite union of polynomial equalities and inequalities. To estimate
its algebraic complexity one can define the degree of such a set as the sum
of the total degrees of these polynomials. By a well-known result of semi-
algebraic geometry, any semi-algebraic A set may be decomposed into cells
(Theorem 2.3.6 in [11]), in particular A =

⋃
φ∈Φ Ima(φ) with Φ being a finite

family of real-analytic maps φ : (0, 1)d → A, where Ima(φ) denotes the image
of φ. For a C l map f = (f1, · · · , fd) : U → Rd defined on an open set U
of Rk, we let ‖dlf‖ = max1≤i≤d maxα∈Nk, |α|=l supx∈U |∂αfi(x)|. A Cr map
φ : (0, 1)k → Rd is called a Cr unit when

‖φ‖r := max
1≤l≤r

‖dlφ‖ ≤ 1

Given an order of smoothness r ∈ N, one can define the r-smooth complexity
of A as the minimal cardinality of a family Φ of Cr units satisfying A =⋃
φ∈Φ φ(0, 1)d.
Roughly speaking the Algebraic Lemma states that the r-smooth com-

plexity of a semi-algebraic set depends only on the smoothness r, its algebraic
complexity and its diameter (not on the coefficient of the polynomials involved
in its definition). We state below the version of the Algebraic Lemma used in
the dynamical applications. Fix the order of smoothness r ∈ N, the dimension
d of the ambient space and some intermediate dimension 0 ≤ k ≤ d. We call
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reparametrization of (0, 1)k any real-analytic map from (0, 1)k to (0, 1)k.
We also denote by B the closed unit Euclidean ball in Rd.

Lemma 1 (Algebraic Lemma [58, 87]). For any r ∈ N and any P : (0, 1)k →
Rd with P = (P1, · · · , Pd) ∈ Rd[X1, · · · , Xk] and maxi degPi ≤ r, there exists
a family Θ = {θ} of reparametrizations of (0, 1)k such that :

1.
⋃
θ∈Θ Ima(θ) = P−1(B),

2. ∀θ ∈ Θ, θ and P ◦ θ are Cr units,

3. ]Θ ≤ C with C = C(k, d, r).

With Yang and Liao [37], we obtained a polynomial estimate of C for k =
d = 1 which was generalized by Binyamini and Novikov in higher dimensions
[10].

Lemma 2. [37, 10] There exists Rk,d ∈ R[X], s.t.

C(k, d, r) = Rk,d(r).

In the next chapter we give new dynamical applications of this improved
version of the Algebraic Lemma. This polynomial estimate of C has also been
useful in diophantine geometry [48, 10].

4.2 Local complexity of Cr maps

Following Yomdin, we show now how the Algebraic Lemma allows to estimate
the local complexity of smooth maps.

We consider a Cr, 2 ≤ r ∈ N, smooth map f : Rd ⊃ B → Rd with
maxl=2,··· ,r ‖dlf‖ ≤ ‖df‖. The next lemma estimates the local complexity of
the image by f of a Cr unit.

Lemma 3. Let s : (0, 1)k → Rd be a Cr unit with r ∈ N∗. There exists a
family Θ = Θ(s) = {θ} of reparametrizations of (0, 1)k such that

•
⋃
θ∈Θ Ima(θ) ⊃ (f ◦ s)−1(B),

• ∀θ ∈ Θ, s ◦ θ and f ◦ s ◦ θ are Cr units,

• ]Θ ≤ Dmax (‖df‖, 1)
k
r with D = D(k, d, r).

Proof. We may assume ‖dr(f ◦ s)‖ ≤ 1. Indeed we can consider subcubes
C of (0, 1)k of size c = max (‖dr(f ◦ s)‖, 1)−1/r covering (0, 1)k and ]{C} ≤
(c−1 + 1)k. Let ψC : (0, 1)k → C be an affine parametrization of C. Then
‖dr(f ◦ s ◦ ψC)‖ = cr‖dr(f ◦ s)‖ ≤ 1 and we can take Θ(s) =

⋃
C Θ(s ◦ ψC).

By Faa-di Bruno formula, ‖dr(f ◦ s)‖ is bounded by a universal polynomial in
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‖dks‖ and ‖dkf‖, 1 ≤ k ≤ r. As s is a Cr unit and maxk=2,··· ,r ‖dkf‖ ≤ ‖df‖
by assumption, we get ‖dr(f ◦ s)‖ ≤ C‖df‖ with C = C(k, d, r).

If ‖dr(f ◦ s)‖ ≤ 1, we consider the (r− 1)-Lagrange polynomial P of f ◦ s
at some x0 ∈ (0, 1)k. Let Θ = {θ} be the family of reparametrizations as in
the Algebraic Lemma for P

2
: (0, 1)k → Rd. Then we have

• (f ◦ s)−1(B) ⊂ P−1(2B) =
⋃
θ∈Θ Ima(θ),

• ‖f ◦ s ◦ θ‖r ≤ ‖P ◦ θ‖r + ‖(f ◦ s− P ) ◦ θ‖r ≤ E = E(k, d, r).

We get the required family by composing each θ with affine contractions of
rate E−1.

4.3 Dynamical reparametrization lemma

We may iterate Lemma 3 to reparametrize dynamical balls of a Cr smooth
system (M, f). As an intermediate step we consider non autonomous dynam-
ical systems and apply it later to the non autonomous system given by the
local dynamics along the future f -orbit of a given point x ∈M .

4.3.1 Non autonomous Cr dynamical version

Let 2 ≤ r ∈ N and 0 < α ≤ 1. We consider a family F = (fm)m∈N∗ of Cr

maps from B to Rd with f0 = IdB and ‖dlfm‖ ≤ ‖dfm‖ < +∞ for l = 2, · · · , r,
for all m. We consider the associated non autonomous system by letting :

∀m ∈ N, fm = fm ◦ · · · ◦ f0 : Bm → Rd

with Bm = Bm(F) being the dynamical ball Bm :=
⋂

0≤l<m(f l)−1B. For a
α-Hölder map φ : B → R we let |φ|α = supx 6=y

|φ(x)−φ(y)|
‖x−y‖α be its α-Hölder

semi-norm. We consider a family Φ = (φm)m∈N of α-Hölder maps from B to
R with supm |φm|α ≤ 1. We denote the associated Birkhoff sums by SmΦ =∑m−1

l=0 φl ◦ f l, m ∈ N.

Lemma 4. Let s : (0, 1)k → Rd be a Cr map. For any m ∈ N∗ there exists a
family Θm = {θm} of reparametrizations of (0, 1)k satisfying :

•
⋃
θm∈Θm

Ima(θm) ⊃ s−1(Bm),

• ∀θm ∈ Θm ∀0 ≤ l < m, f l ◦ s ◦ θm is a Cr unit,

• ∀θm ∈ Θm, |SmΦ ◦ s ◦ θm|α ≤ 1,

• ]Θm ≤ Dm max (‖drs‖, 1)
k
r

m−1∏
l=0

max (‖dfl‖, 1)
k
r with D = D(k, d, r).
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Proof. We argue by induction on m. For each θm ∈ Θm, we apply
Lemma 3 to fm and to the Cr unit fm−1 ◦ s ◦ θm. Take Θ′m+1 =
{θm ◦ θ | θm ∈ Θm, θ ∈ Θ(fm−1 ◦ s ◦ θm)} . Again by Faa-di Bruno formula,
for any θ′m+1 ∈ Θ′m+1 and for any 0 ≤ l ≤ m we have ‖f l ◦ s ◦ θ′m+1‖r ≤ C
for some constant C = C(k, d, r)(≥ 1). Moreover |φm ◦ f l ◦ s ◦ θ′m+1|α ≤
|φm|α‖d(f l ◦ s ◦ θ′m+1)‖α ≤ Cα, thus |Sm+1Φ ◦ s ◦ θ′m|α ≤ Cα + 1 ≤ 2C. We get
the required reparametrizations θm by composing each θ′m with affine contrac-
tions of rate c = (2C)−1.

4.3.2 Dynamical reparametrization lemma for C∞ smooth systems

We consider now a usual C∞ system, i.e. a C∞ map f : M 	 on a compact
smooth Riemannian manifold, with a α-Hölder potential φ : M → R with
0 < α ≤ 1. We let Snφ =

∑n−1
l=0 φ ◦ f l, n ∈ N, be the associated Birkhoff

sums. Let σ : (0, 1)k →M be a C∞ map with ‖drσ‖ < +∞ for all r ∈ N.

Lemma 5. For all γ > 0, there exists ε = ε(f, φ, γ) and C = C(f, φ, σ, γ) > 0
such that for all x ∈M the following properties hold.

For any n ∈ N∗ there exists a family Θn = {θn} of reparametrizations of
(0, 1)k satisfying :

•
⋃
θn∈Θn

Ima(θn) ⊃ σ−1 (Bn(x, ε)),

• ∀θn ∈ Θn ∀0 ≤ l < n, ‖d(f l ◦ σ ◦ θn)‖ ≤ 1,

• ∀θn ∈ Θn, ∀t, s ∈ Ima(θn), |Snφ ◦ σ(t)− Snφ ◦ σ(s)| ≤ 1,

• ]Θn ≤ Ceγn.

The third item may be seen as a weak Bowen property for φ on σ. Recall
the Bowen property for the potential φ is defined as follows [14] :

∃ε > 0 ∃C > 0 such that

∀n ∈ N ∀y ∈ Bn(x, ε), |Snφ(x)− Snφ(y)| < C.

Lemma 5 is deduced from its non autonomous version Lemma 4 as follows.
To avoid some technical points we assume M is the torus M = Rd/Zd. Fix
x ∈ Rd and denote by x ∈ Rd/Zd its projection on the torus. For ε > 0 we
let ψεx = x+ ε· : Rd → Rd/Zd. Without loss of generality we may assume
ε < 1/2 and Ima(σ) ⊂ B(x, 2ε). Then we let

s = (ψεx)
−1 ◦ σ : (0, 1)k → Rd.
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We consider the non-autonomous system associated to the local dynamics of
fp, p ∈ N∗, at x given by F = (fm)m with

fm =
(
ψεfp(m+1)x

)−1

◦ fp ◦ ψεfpmx.

Finally the corresponding potentials Φ = (φm)m are defined as

φm =

p−1∑
l=0

φ ◦ f l ◦ ψεfpmx.

Observe that

∀s ≥ 1, sup
m
‖dsfm‖ = O(εs−1)

and sup
m
|φm|α = O(εα) uniformly in x ∈M.

Proof of Lemma 5. Choose r, p, then ε with respect to a small fixed error term
γ > 0 such that

• r ∈ N∗ with ‖df‖k/r < eγ/2,

• p ∈ N∗ with D1/p < eγ/2, where D is the constant in Lemma 4,

• ε > 0 with 2εmax(‖dfp‖, 1) < 1, ‖fm‖r = ‖dfm‖ ≤ ‖dfp‖ and |φm|α ≤ 1
for all m ∈ N with F = (fm)m and (φm)m as above.

For n = pm, we have

Bf
n(x, ε) ⊂ ψεx (Bm(F)) and

Snφ = SmΦ ◦ (ψεx)
−1 .

Let (Θm(F))m be the families of reparametrizations given by Lemma 4 applied
to F . The family Θ′n = {θ′n = θm, θm ∈ Θm(F)} satisfies the conlusion of
Lemma 5 for l, n ∈ pN, as we have for some C independent of n = pm:

]Θ′n ≤ Dm

m−1∏
l=0

max (‖fl‖r, 1)
k
r ,

≤ Dm max (‖df‖, 1)n
k
r ,

≤ Ceγn.

One easily concludes the proof in the general case (for any l and n) by com-
posing the reparametrizations of Θ′n with affine contractions of rate depending
only on p, r, d.
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5.1 Shub’s entropy conjecture

Let M be a compact manifold and let f : M 	 be a continuous map. We
may consider the map f∗ induced on its homology groups, f∗ : H∗(M) =
⊕iHi(M,R) 	. We let ρ(f∗) be the spectral radius of f∗. Shub has conjectured
that:

Conjecture 1 (Shub). For any C1 smooth system,

htop(f) ≥ log ρ(f∗).

The conjecture is known to hold true under some general expansive prop-
erties, e.g. :

• for diffeomorphisms C1 far from homoclinic tangencies (Liao-Viana-Yang
[67]).

• for C∞ systems (Yomdin [87], see below).

Manning [70] has proved that htop(f) ≥ ρ(f 1
∗ ) for general continuous map f ,

where ρ(f 1
∗ ) is the spectral radius of the action induced on the first homology

group H1(M). Finally note there are Lipschitz counter-examples [78]. The
conjecture is still open in the general case (even for C2 systems).
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5.2 Volume growth

For a smooth Riemannian manifold (M, ‖ ·‖) we let ΛkTM be the kth exterior
power tangent bundle endowed with the Riemannian structure inherited from
(M, ‖ · ‖). If f : M → N is a smooth map between smooth manifolds M and
N we let Λkdf : ΛkTM → ΛkTN be the induced map.

Fix a C∞ smooth Riemannian manifold (M, ‖ · ‖). We let D(M) be the
set of C∞ maps σ : (0, 1)k → M , k ≤ dim(M), with ‖drσ‖ < +∞ for all
r ∈ N. Given a C1 map f : M 	 and a map σ : (0, 1)k → M in D(M) we
may define the volume growth v(σ) of σ as the exponential growth rate in n
of the k-volume of fn ◦ σ :

v(σ, f) = lim sup
n

1

n
log volk(f

n−1 ◦ σ),

= lim sup
n

1

n
log

∫
(0,1)k

‖Λkdt(f
n ◦ σ)‖ dt,

We can also consider local quantities as follows

∀ε > 0, v∗(σ, f, ε) = lim sup
n

1

n
log sup

x∈M
volk(f

n ◦ σ|σ−1Bn(x,ε)),

= lim sup
n

1

n
log sup

x∈M

∫
σ−1Bn(x,ε)

‖Λkdt(f
n ◦ σ)‖ dt.

Then we let
v(f) = sup

σ∈D(M)

v(σ, f),

v∗(f) =
↘

lim
ε→0

sup
σ∈D(M)

v∗(σ, f, ε).

The volume growth may be compared with the topological entropy. Firstly
its is easily seen that

v(σ, f) ≤ htop(f, ε) + v∗(σ, f, ε),

thus

v(f) ≤ htop(f) + v∗(f). (5.1)

Moreover building on Pesin’s theory, Newhouse has proved the following
theorem:

Theorem 9. [75, 76] For any C1+ map f : M 	 we have :

• htop(f) ≤ v(f),

• ∀µ ∈M(M, f), lim supν→µ h(ν) ≤ h(µ) + v∗(f).

Finally by using De Rham cohomology, one checks easily that

ρ(f∗) ≤ v(f). (5.2)
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5.3 Local volume growth and tail entropy of smooth sys-
tems

Theorem 10. [87] For any C∞ map f : M 	, we have

v∗(f) = 0.

The entropy conjecture for C∞ systems then follows from (5.2) and (5.1).

Proof. Theorem 10 is a direct consequence of Lemma 5 in the previous chapter.
Indeed, with the notations of this lemma, we have ‖d(fn−1 ◦ σ ◦ θn)‖ ≤ 1 for
any θn ∈ Θn, therefore

vol
(
fn−1 ◦ σ|σ−1Bn(x,ε)

)
≤
∑
θn∈Θn

vol
(
fn−1 ◦ σ ◦ θn

)
,

≤ ]Θn,

≤ Ceγn.

As a consequence of Theorem 9, Newhouse obtained:

Corollary 3. [75] For any C∞ map f : M 	, we have

• htop(f) = v(f),

• the Kolmogorov entropy h :M(M, f)→ R is upper semi-continuous. In
particular there exists a measure of maximal entropy.

Buzzi observed that the conditions ‖d(fk ◦σ◦θn)‖ ≤ 1 for k = 0, · · · , n−1
implies that the (n, δ)-balls centered at σ ◦ θn(x) with x ∈ (0, 1)k ∩ δZk are
covering the image of σ ◦ θn. Therefore with the notations of Lemma 5, we
get

∀n ∈ N, ∀x ∈M, ∀δ > 0, rn (Bn(x, ε), δ) ≤ δ−k]Θn,

then
h∗(f, ε) ≤ lim sup

n

1

n
log ]Θn ≤ γ.

Corollary 4. [39] For any C∞ system f : M 	, we have

h∗(f) := lim
ε→0

h∗(f, ε) = 0.

In fact, for the class C = C∞(M) of C∞ maps on M endowed with the
C∞ topology, the robust tail entropy h∗C is zero. For the sake of simplicity we
only focused here on C∞ systems, but there are Cr versions, 1 ≤ r < +∞, of
all these results, e.g. with R(f) = limn

log+ ‖dfn‖
n

we have for f : M 	 Cr :
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max (v∗(f), h∗(f)) ≤ dim(M)

r
R(f).

These upperbounds in intermediate smoothness are essentially sharp.
Moreover there are Cr examples without maximal measures [71, 39]. We
recall below an easy example of a C∞ map f : R2 	 with a Cr, but not Cr+1

curve, σ : (0, 1) → R2 with limε→0 v
∗(σ, f, ε) > 0. Let f : R2 	 be the linear

map given by
(
λ−1 0
0 λ

)
with λ > 1 and let σ : [−1, 1] 3 t 7→ (t, t2r+1 sin(1/t)).

Fix ε > 0 arbitrarily small and let P be the last top of a branch of σ such

X

XX
f (P)
n

σ σf (     B(0,1))n

Un

O O

P

U
[0,1]

2

that fnP lie in the square [−ε, ε]2. Then we have yfn(P ) = x2r+1
P × λn ' 1

and there are ' 1/xP disconnected branches in fn (σ ∩Bn(0, ε)) each of size
larger than ε. Therefore

v∗(σ, f, ε) ≥ lim
n

log(1/xP )

n
=

log λ

2r + 1
.

5.4 Rate of convergence of the tail entropy

In [37] we study the rate of convergence of h∗(f, ε) to zero for C∞ systems
(M, f). We show in particular that the convergence may be arbitrarily slow :

Theorem 11. [37] For any function l : (0,+∞)→ (0,+∞) with l(ε) ε→0−−→ 0,
there is a C∞ smooth diffeomorphism f with h∗(f, ε) ≥ l(ε) for ε small enough.

However if we fix some bounds on the supremum norms of the k-derivatives,
i.e. in a given ultradifferentiable class CA(M) = {f ∈ C∞(M), ∀k ‖dkf‖ ≤
Ak} with a given sequence A = (Ak)k ∈ (R+)

N, we manage to give explicit
rates of convergence for h∗(f, ε) for f ∈ CA(M) in terms of A. In particular
for analytic maps we obtain :
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Theorem 12. [88, 37, 10] Let f : M 	 be a real-analytic map. Then there
is C = C(‖df‖) such that for ε > 0 small enough :

h∗(f, ε) ≤ C
log(| log ε|)
| log ε|

.

The above theorem was first proved by Yomdin [88] for surface diffeomor-
phisms by using Bernstein inequalities. With Liao and Yang [37], we gave
another complete proof in this setting. The higher dimensional case follows
straightforwardly from our proof and the polynomial estimate of the constant
C in Lemma 2 for d > 1, which was proved later by Binyamini-Novikov [10].

The main idea of Theorem 12 in [37] consists in observing that in the proof
of Lemma 5 for C∞ systems, for any scale ε > 0 we may choose (thanks to
an explicit estimate in r of the constant D) an optimal order of smoothness
r = r(ε) for which we can apply the Cr reparametrization Lemma 4.

In [37] we manage to build optimal examples in most ultradifferentiable
classes, but we only manage to get real analytic examples f with h∗(f, ε) ≥

1
| log ε| . These examples are just given by analytic maps with a quadratic ho-
moclinic tangency. We expect this last bound to be optimal, that is we can
replace log(| log ε|)

| log ε| by 1
| log ε| in Theorem 12, but our proof does not allow to reach

such an estimate.
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6.1 Bounded curves

Following [24, 33], a Cr, 2 ≤ r ∈ N, smooth curve σ : (−1, 1)→ R2 is said :

• r-bounded when
max
k=2,··· ,r

‖dkσ‖ ≤ 1

10
‖dσ‖,

• r-strongly bounded when σ is r-bounded and ‖dσ‖ ≤ 1,

• to have r-bounded geometry when σ is r-strongly bounded and sat-
isfies ‖σ′(0)‖ ≥ 1

10
.

We fix now the order of smoothness r, so that we will just speak of bounded
curves. We list below some elementary properties of such curves.

Proposition 2. [33]

1. A bounded curve σ has bounded distorsion:

∀t, s ∈ (−1, 1),
‖σ′(t)‖
‖σ′(s)‖

≤ 3/2,

and such a curve lies in a cone:

∀t, s ∈ (−1, 1), ∠σ′(t), σ′(s) ≤ π

6
,
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2. a strongly bounded curve σ is a Cr unit, ‖σ‖r ≤ 1,

3. the intersection of the image of a bounded curve with a ball of radius 1/4
is the image of a strongly bounded curve,

4. a curve with bounded geometry has bounded curvature. More precisely,
the image of σ is the graph of a Cr map ψ : Rσ′(0) ⊃ I → σ′(0)⊥ with I
being a segment of length larger than 1/100 and with ‖ψ‖r bounded by a
constant depending only on r.

6.2 Image of a bounded curve

We consider a Cr smooth map f : B → R2 with maxk=2,··· ,r ‖dkf‖ ≤ ‖df‖.
For x̂ = (x, v) ∈ PTB = B × PR2 we let φf (x̂) = log

(
‖dxf(v)‖
‖v‖

)
. For a C1

embedded curve s : (−1, 1)→ B we let ŝ : (−1, 1)→ PTB, t 7→
(
s(t), s′(t)

‖s′(t)‖

)
,

be the induced map on the projective space PTB.

Lemma 6. If s : (−1, 1)→ B is a strongly bounded curve, then for any k ∈ Z,
there is a finite family Θ = {θi}i∈I , I = I

∐
I, of affine reparametrizations of

(−1, 1), such that we have for some constant C = C(r):

•
⋃
i∈I Ima(s ◦ θi) ⊃ {x = s(t), φf (ŝ(t)) ∈ [k, k + 1[},

• ∀i ∈ I the curve f ◦ s ◦ θi is strongly bounded and
∀i ∈ I the curve f ◦ s ◦ θi has bounded geometry,

• ]I ≤ 100ek and ]I ≤ C
(
‖df‖
ek

) 1
r−1

.

The above lemma is similar to Lemma 3. Beyond the distinct ways in
estimating the Cr complexity (Cr unit versus r-bounded curve), the main
difference in the two lemmas comes from the reparametrized set : in Lemma
3 we reparametrize s on f−1B, rather here on φ−1

f ([k, k + 1[) for some k. In
others terms we previously fix the value of f and we fix now the size of the
derivative on the curve s.

Sketch of proof. For any k < l ∈ Z we let

Ak,l := {t ∈ (−1, 1), φf (ŝ(t)) ∈ [k, l[} .

First step : control of the r-derivative. Let θb : (−1, 1) 	 be an affine con-
traction of rate b with Ima(θb) ∩ Ak,k+1 6= ∅. By using Faa-di Bruno formula

one gets easily with b = C
(
‖df‖
ek

)− 1
r−1 for some constant C depending only on

r :
‖dr−1 (d(f ◦ s ◦ θb)) ‖ ≤ e−4+k.
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Second step : Polynomial interpolation. Let P ∈ R2[X] be the Tay-
lor polynomial of degree r − 2 of d(f ◦ s ◦ θb) at 0 and let A ={
t ∈ (−1, 1), ‖P (t)‖ ∈ [e−3+k‖d(s ◦ θb)‖, e3+k‖d(s ◦ θb)‖]

}
. By interpolation,

one checks easily with the previous bound on the r-derivative that

θ−1
b (Ak,k+1) ⊂ A ⊂ θ−1

b (Ak−3,k+4).

Third step : Landau-Kolmogorov inequality. Landau-Kolmogorov inequal-
ity claims there is some constant C(s) such that for a Cs map g : (−1, 1)→ R:

∀0 ≤ k ≤ s, ‖dkg‖ ≤ C(s) (‖g‖+ ‖dsg‖) . (6.1)

Let J be a connected component of A with θb(J) ∩ Ak,k+1 6= ∅ and let ψJ :
(−1, 1) → J be the affine reparametrization of J . Then θ̃ = θb ◦ ψJ satisfies
by applying (6.1) to g = d(f ◦ s ◦ θ̃) with s = r− 1 (the constants C(r) below
may change at each step):

∀1 ≤ k ≤ r, ‖dk(f ◦ s ◦ θ̃)‖ ≤ C(r)
(
‖d(f ◦ s ◦ θ̃)‖+ ‖dr(f ◦ s ◦ θ̃)‖

)
,

≤ C(r)ek|J |‖d(s ◦ θ)‖,
≤ C(r) min

t∈(−1,1)
‖dt(f ◦ s ◦ θ̃)‖.

Last step : conclusion. Let finally ˜̃θ = θ̃ ◦ θc with c = (10C(r))−1. We have
for all 2 ≤ k ≤ r:

‖dk(f ◦ s ◦ ˜̃θ)‖ ≤ c2C(r) min
t∈(−1,1)

‖dt(f ◦ s ◦ θ̃)‖,

≤ 1

10
‖d(f ◦ s ◦ ˜̃θ)‖,

i.e. ˜̃θ is bounded. Observe also that:

]
{

˜̃θ
}
≤ C(r)b−1 ≤ C(r)

(
‖df‖
ek

) 1
r−1

.

For the reparametrizations f ◦ s ◦ ˜̃θ, which are strongly bounded, we just
let ˜̃θ ∈ Θ. Then we may cover f ◦ s ({t, φf (ŝ(t)) ∈ [k, k + 1[}) by at most
100ek balls of radius 1/4 and the intersection of each ball with the image of
f ◦ s ◦ ˜̃θ for the others ˜̃θ allow us to define another element of θ ∈ Θ by using
the third item of Proposition 2.
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6.3 Dynamical reparametrization lemma

We consider a Cr, r ∈ N∗, diffeomorphism g : M 	 on a compact Riemannian
surface. We denote by PTM =

∐
x PTxM the projective tangent bundle of

M . We let G : PTM 	, (x, v) 7→ (x, dxg(v)) be the map induced by g on the
projective tangent bundle. Let exp be the exponential map of M .

We may transpose the notion of bounded curve from the Euclidean space
R2 to the Riemannian surface via the exponential map as follows. We say
that a Cr curve σ : (−1, 1) → M is ε-bounded (resp. ε-strongly bounded,
ε-bounded geometry) when ε−1 exp−1

x ◦σ : (−1, 1)→ R2 with x = σ(0) is well
defined and is bounded (resp. strongly bounded, has bounded geometry). We
may also consider dynamically bounded curves : for n ∈ N∗ the curve σ is said
(n, ε)-bounded (resp. (n, ε)-strongly bounded) when gk ◦σ is ε-bounded (resp.
ε-strongly bounded) for all 0 ≤ k < n. For x ∈ Ima(σ) we let x̂ = (x, vx) be
the projective vector tangent to the curve σ at x. A (n, ε)-bounded curve σ
satisfies the following bounded distorsion property :

∀x, y ∈ Ima(σ), |φgn−1(x̂)− φgn−1(ŷ)| ≤ 10.

We choose now ε > 0 so small that ‖dsgx2ε‖∞ ≤ 3ε‖dxg‖ for all s = 1, · · · , r
and all x ∈M , where gx2ε is g ◦ expx(2ε·) : {wx ∈ TxM, ‖wx‖ ≤ 1} →M . We
fix some embedded ε-strongly bounded Cr curve σ with ε as above.

For x ∈ Ima(σ) we let K(x) ≥ k(x̂) be the following integers:

K(x) := [log ‖dxg‖] ,

k(x̂) := [log ‖dxg(vx)‖] .

We present below two reparametrization lemmas on σ under g (with ε > 0
fixed as above) which are proved by induction from Lemma 6.

6.3.1 Local version

We first state a local reparametrization lemma, meaning that we reparametrize
the curve σ restricted to a dynamical ball as in Lemma 5.

For all n ∈ N∗ and x ∈ Ima(σ) we let let kn(x) be the n-uple of integers

kn(x) = (k(x̂), · · · , k(Glx̂), · · · , k(Gn−1x̂)) ∈ Zn.

Given kn = (k0, · · · , kn−1) ∈ Zn we consider the subset

H(kn) := {x ∈ Ima(σ), kn(x) = kn} .
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Lemma 7. For any x ∈ M and any kn = (k0, · · · , kn−1) ∈ Zn, there is a
family Θn = {θn : (−1, 1) 	} of affine maps satisfying for some constant
C = C(r) :

•
⋃
θn∈Θn

Ima(θn) ⊃ σ−1 (Bn(x, ε) ∩H(kn)),

• ∀θn ∈ Θn, σ ◦ θn is (n, ε)-strongly bounded,

• ]Θn ≤ Cn
∏

0≤l<n e
K(glx)−kl

r−1 .

We do not detail the proof, which goes by induction on n by using Lemma
6.

6.3.2 Global version

We state now a global reparametrization lemma to describe the dynamics
on the whole set Ima(σ). We will encode the dynamics of g on Ima(σ)
with a tree. A weighted directed rooted tree T is a directed rooted tree
whose edges are labelled. Here the weights on the edges are pairs of in-
tegers. Moreover the nodes of our tree will be coloured, either in blue or in red.

We let Tn (resp. Tn, Tn) be the set of nodes (resp. blue, red nodes)
of level n. For all k ≤ n − 1 and for all in ∈ Tn, we also let ink ∈ Tk
be the parent node of level k leading to in. For in ∈ Tn, we let
K(in) = (K1(in), k1(in), K2(in), · · · , kn(in)) be the 2n-uple of integers
given by the sequence of labels along the path from the root i0 to in, where
(Kl(i

n), kl(i
n)) denotes the label of the edge joining inl−1 and inl .

For all n and x ∈ Ima(σ) we let Kn(x) be the 2n-uple of integers

Kn(x) = (K(x), k(x̂) · · · , K(gn−2x), k(Gn−2x̂), K(gn−1x), k(Gn−1x̂)).

Given Kn = (K1, k1, · · ·Kn, kn) ∈ Z2n we consider then

K(Kn) := {x ∈ Ima(σ), Kn(x) = Kn} .

Lemma 8. There is a bicoloured weighted directed rooted tree T and (θin)in∈Tn,
n ∈ N, families of affine reparametrizations of (−1, 1), such that for some
constant C(r) depending only on r:

1. ∀Kn ∈ (Z× Z)n, we have
⋃

in∈Tn
K(in)=Kn

Ima(θn) ⊃ σ−1H(Kn),

2. ∀in ∈ Tn, the curve σ ◦ θin is strongly (n, ε)-bounded and
∀in ∈ Tn, the curve fn ◦ σ ◦ θin has ε-bounded geometry,
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3. ∀in−1 ∈ Tn−1 and (Kn, kn) ∈ Z× Z we have :

]
{
in ∈ Tn, inn−1 = in−1 and kn(in) = kn

}
≤ 100ekn ,

]
{
in ∈ Tn, inn−1 = in−1 and (Kn(in), kn(in)) = (Kn, kn)

}
≤ C(r)e

Kn−kn
r−1 .

Each node of level n of the tree represents a strongly bounded subcurve of
fn ◦ σ. The last item gives estimates of the valence of the tree in terms of the
labels. Again the proof goes by induction from Lemma 6.
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Figure 6.1: The tree and the corresponding strongly bounded subcurves in σ, f ◦ σ
and f2 ◦σ. Red subcurves correspond to pieces with bounded geometry. Picture by
Joshua Park.
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We end this chapter by introducing the notion of geometric times which
plays a key role in the proof of Theorem 27 below. Let x ∈ Ima(σ). Roughly
speaking a geometric time of x is a time n for which the curve fn◦σ looks nice
around fnx. More precisely an integer n is said to be a geometric time of
x with respect to σ when fnx belongs to a subcurve with bounded geometry
of fn ◦ σ.
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We first introduce Lyapunov exponents which are closely related to entropy
for smooth systems. Let (M, ‖ · ‖) be a Riemannian compact manifold and
let f : M 	 be a C1 map. The Lyapunov exponents estimate the exponential
growth in n of the differential of f . More precisely, we let

∀v ∈ TxM, x ∈ X, χ(x, v) := lim sup
n

1

n
log ‖dxfn(v)‖.

There is a (measurable in x) flag {0} = F
r(x)
x ( · · · ( F 2

x ( F 1
x = TxM

and real numbers −∞ ≤ χr(x)−1(x) < · · · < χ2(x) < χ1(x) < +∞, such
that χ(x, v) = χi(x) for all v ∈ F i

x \ F i−1
x for i = 1, · · · , r(x) − 1. The

numbers (χi(x))i are called the (upper) Lyapunov exponents of x. Oseledets
theorem states that for any µ ∈ M(M, f) the limsup defining Lyapunov
exponents are in fact limits for µ almost every x. The maximal Lyapunov
exponent may be also defined as χ1(x) = lim supn

1
n

log ‖dxfn‖. Here we let
with χ+

1 (x) = max(χ1(x), 0) :

∀µ ∈M(M, f), χ+(µ) =

∫
χ+

1 (x) dµ(x).

It is easily checked that R(f) = supx χ
+
1 (x) = supµ χ

+(µ).

The algebra ΛTM of exterior powers of TM inherits a Riemannian struc-
ture from (M, ‖ · ‖). We let χ+

Λ be the maximal nonnegative Lyapunov expo-
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nent of Λdf : ΛTM 	 :

χ+
Λ(x) = lim sup

n

1

n
log+ ‖Λdxfn‖.

When x is a Lyapunov regular point, χ+
Λ(x) is just the sum of the positive

pointwise Lyapunov exponents, i.e. χ+
Λ(x) =

∑
i χ

+
i (x). For an invariant

measure µ we let then

χ+
Λ(µ) =

∫
χ+

Λ(x) dµ(x).

7.1 Measures of maximal entropy for Cr, r ≥ 1, interval
maps with large entropy

For piecewise monotone interval maps, Hofbauer [59] has built a coding of the
dynamic by a topological Markov chain with countable states, which preserves
the entropy. In particular he showed in this setting the finiteness of ergodic
measures of maximal entropy.

In his PhD thesis, Buzzi has generalized this construction to Cr inter-
val maps. With Ruette [45], they showed that any Cr interval map with
htop(f) > 2R(f)

r
admits measures of maximal entropy and there are only finitely

many ergodic one’s. In the other hand there are counter-examples in finite
smoothness for interval maps with small topological entropy :

Theorem 13. [39] For any r ≥ 1, there are Cr smooth interval maps f :
[0, 1] 	 without measure of maximal entropy or with infinitely many one’s
satisfying htop(f) = R(f)

r
> 0.

In [25] we improve Buzzi-Ruette estimates to get the following sharp state-
ment:

Theorem 14. [25] Any Cr interval map htop(f) > R(f)
r

> 0 admits a finite
(positive) number of measures of maximal entropy.

As in [45], the proof is based on the Markov representation of the Buzzi-
Hofbauer diagram and an estimate of the entropy escaping to infinity. In the
same setting, I showed in [26] that the topological entropy is continuous for
the Cr topology at any interval map with htop(f) > R(f)

r
:

Theorem 15. [26] Let f be a Cr interval map with htop(f) > R(f)
r

, then

lim
g
Cr−→f

htop(g) = htop(f).
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7.2 Measures of maximal entropy for Cr for surface dif-
feomorphisms with large entropy

In a tour de force, Sarig has generalized the construction of Markov parti-
tions to the non-uniformly hyperbolic setting for a surface diffeomorphism
[83] (see [6] in higher dimensions). In this way he obtained a coding of the
non-uniformly hyperbolic points by a topological Markov chain with countable
states preserving the entropy. With Crovisier and Buzzi, they show that any
Cr, r > 1, surface diffeomorphism f with htop(f) > R(f)

r
has at most finitely

many maximal measures when the topological entropy of f is larger than R(f)
r

[44]. In the C∞ case, this solves a long-standing conjecture of Newhouse.
More recently to study the statistical properties of the measures of maximal
entropy they show the following entropic continuity of the maximal Lyapunov
exponent.

Before stating their result, let us recall some notations. For a C1 surface
diffeomorphism f : M 	, recall that F : PTM 	 is the induced map on the
projective tangent bundle and that φf : PTM → R denotes the continuous
map (x, v) 7→ log ‖dxf(v)‖. Observe now that if µ is an f -invariant measure
such that µ almost every point x has exactly one positive Lyapunov exponent,
there is a unique lift µ̂+ of µ supported on the unstable Oseledets bundle. Note
that we have in this case

∫
φf dµ̂

+ = χ+(µ).

Theorem 16. [43] Let (fk : M 	)k be a sequence of C∞, surface diffeomor-
phisms converging to f (in the C∞ topology). Suppose that there are ergodic
Fk-invariant measures ν̂+

k , k ∈ N, converging to µ̂.
Then there are F -invariant measures µ̂0 and µ̂+

1 with µ̂ = (1−β)µ̂0 +βµ̂+
1 ,

β ∈ [0, 1], such that

lim sup
k→+∞

h(νk) ≤ βh(µ1). (7.1)

In the above statement we mean implicitly that the projection µ1 of µ̂+
1

on M has exactly one positive exponent.

As a consequence of the above theorem, if fk = f for all k with htop(f) > 0
and (νk)k is a sequence of ergodic f -invariant measures converging to µ with
limk h(νk) = htop(f), then µ̂ = µ̂+

1 , µ1 = µ and β = 1, therefore

lim
k
χ+(νk) = lim

k

∫
φfk dν̂

+
k =

∫
φf dµ̂

+
1 = χ+(µ).

We prove recently the following Cr version of Theorem 16. We follow
almost the same strategy as [43], except that to prove Inequality (7.1) we cut
the orbit of typical νk points x along geometric times of the unstable manifold
rather than hyperbolic times.



44 Chapter 7. Measures of maximal entropy in small dimensions

Theorem 17. [34] Let (fk)k be a sequence of Cr, with r > 1, surface dif-
feomorphisms converging to f (in the Cr topology). Suppose that there are
ergodic Fk-invariant measures ν̂+

k , k ∈ N, converging to µ̂.
Then for any α > R(f)

r
there are F -invariant measures µ̂0 and µ̂+

1 with
µ̂ = (1− β)µ̂0 + βµ̂+

1 , β ∈ [0, 1], such that

lim sup
k→+∞

h(νk) ≤ βh(µ1) + (1− β)α.

As consequences of Theorem 17 we get the analogous statements of The-
orem 14 and Theorem 15 for surface diffeomorphisms.

Corollary 5 (Existence of maximal measures). Let f be a Cr, with r > 1,
surface diffeomorphism with htop(f) > R(f)

r
. Then f admits a measure of

maximal entropy.

Proof. We let fk = f for all k. Let νk be a sequence of ergodic measures with
limk h(νk) = htop(f). By applying Theorem 17 with R(f)

r
< α < htop(f), we get

after extracting a subsequence htop(f) = lim supk h(νk) ≤ βh(µ1) + (1 − β)α
for some µ1 ∈M(M, f). Therefore β = 1 and h(µ1) = htop(f).

One proves similarly the upper semi-continuity of the topological entropy
at f with htop(f) > R(f)

r
. Also by a celebrated result of Katok [62] any C1+

surface diffeomorphism admits hyperbolic horseshoes with entropy arbitrarily
close to the topological entropy. As a consequence, the topological entropy is
lower semi-continuous on the set of Cr surface diffeomorphisms. Therefore we
get:

Corollary 6 (Continuity of the topological entropy). Let (fk)k be a sequence
of Cr, with r > 1, surface diffeomorphisms converging in the Cr topology to f
with htop(f) > R(f)

r
. Then we have

htop(f) = lim
k
htop(fk).

Finally we mention that Cr counter-examples f with htop(f) < R(f)
r

have
been built by Buzzi in [40].

7.3 Equidistribution of periodic points

For expansive homeomorphisms with the strong specification property, Bowen
proved in [13] the equality between the topological entropy and the exponential
growth rate of periodic points, together with the equidistribution of periodic
points along the unique invariant measure of maximal entropy. In particular
these properties hold true for topologically transitive subshifts of finite type
and Axiom A systems. Therefore, for C1+ surface diffeomorphisms, by Katok’s
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horseshoe theorem, the exponential growth in n of saddle (hyperbolic) n-
periodic points is larger than or equal to the topological entropy.

We get in [31] the following result :

Theorem 18. Let f : M →M be a C∞ diffeomorphism of a compact surface
M (resp. a C∞ interval map) with positive topological entropy htop(f) > 0.

Then for any δ ∈]0, htop(f)[ the set Perδn of saddle (resp. repelling) n-
periodic points with Lyapunov exponents δ-away from zero grows exponentially
in n as the topological entropy. Moreover these periodic points are equidis-
tributed along measures of maximal entropy, i.e.:

• lim supn→+∞
1
n

log ]Perδn = htop(f),

• any weak-star limit of
(

1
]Perδnk

∑
x∈Perδnk

δx

)
k
is an f -invariant measure of

maximal entropy, for all increasing sequences of positive integers (nk)k
satisfying

lim
k→+∞

1

nk
log ]Perδnk = htop(f).

V. Kaloshin [61] has shown that in C∞ Newhouse domains (i.e. C∞ open
sets with a dense subset of diffeomorphisms having an homoclinic tangency)
generic C∞ smooth surfaces diffeomorphisms with arbitrarily fast growth of
saddle periodic points (see [5] for real-analytic examples). For these examples
we can therefore not replace the sets Perδn with the sets Pern of all n-periodic
points in our Main Theorem.

It follows also from Sarig’s coding that there is an integer p such that for
any 0 < δ < htop(f):

• limn→+∞, p|n
1
n

log ]Perδn = htop(f),

• any weak-star limit of
(

1
]Perδn

∑
x∈Perδn

δx

)
n, p|n

is a measure of maximal
entropy.

The proof of Theorem 18, which consists in showing the asymptotic Perδ-
expansiveness, is based on another more involved Reparametrization Lemma
of the differential map acting on the bundle

∐
x∈M TxM × TxM.





Chapter 8

Symbolic extensions in
intermediate smoothness

Related personal works : [21],[22],[24],[28],[36]

Contents
8.1 The case of interval maps . . . . . . . . . . . . . . . . . . . . 47

8.2 Symbolic extensions for Cr surface diffeomorphisms . . . . 48

8.3 ... in higher dimensions . . . . . . . . . . . . . . . . . . . . . . 48

The theory of symbolic extensions, which was developed for general topo-
logical systems, is particularly relevant in the study of smooth dynamical sys-
tems. Indeed the existence of (principal) symbolic extensions highly depends
on the smoothness of the system :

• C∞ systems are asymptotically h-expansive (Corollary 4), therefore al-
ways admit principal symbolic extensions by Corollary 1,

• there is an open set O of C1 diffeomorphisms such that generic diffeo-
morphism f ∈ O has no symbolic extension in dimension ≥ 3 [4]. In
the conservative setting, C1 generic system with no dominated spliitting
have no symbolic extension [41, 54].

• there is an open set O of Cr smooth, +∞ > r > 1, diffeomorphisms such
that generic diffeomorphisms f ∈ O has no principal symbolic extension
in dimension ≥ 2 [54].

8.1 The case of interval maps

Downarowicz and Maass have established the existence of symbolic extensions
for Cr interval maps in [53]. For a f -invariant probability measure µ, we recall
that χ+(µ) =

∫
χ+(x) dµ(x) with χ+(x) being the positive Lyapunov exponent

at x given by χ+(x) = lim supn
1
n

log+ |(fn)′(x)|.

Theorem 19. [53] Any Cr interval map with r > 1 admits a symbolic exten-
sion π with hπ = χ+

r−1
.
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In [21], I have built sharp examples on the interval :

Theorem 20. For any r > 1, there is an interval map fr : [0, 1] 	 fixing 0
such that for any symbolic extension π : (Y, S)→ [0, 1] of fr, we have

hπ(δ0) =
log ‖f ′‖∞
r − 1

> 0.

In the proof we follow the strategy of [54] by accumulating horseshoes at
finer and finer scales. However the construction is here explicit (we do not use
Baire arguments).

8.2 Symbolic extensions for Cr surface diffeomorphisms

I proved the existence of symbolic extensions for C2 surface diffeomorphisms in
[22]. The proof is based on a reparametrization lemma of the whole dynamical
ball as in Lemma 5, where the reparametrizations θn are straightening maps
of the finite time stable and unstable distributions. In [24] we improved the
main result of [22] as follows:

Theorem 21. Any Cr diffeomorphism with r > 1 on a compact Riemannian
manifold of dimension 2 or 3 admits a symbolic extension π with hπ =

χ+
Λ

r−1
.

Ideas of the proof. We sketch the proof for surface diffeomorphisms. We have
to check that χ+

r−1
is a superenvelope, i.e. for some entropy structure (hk)k for

any invariant measure µ and for all γ > 0 there is kµ and δµ such that for any
invariant measure ν which is δµ-close to µ :(

h− hkµ
)

(ν) ≤ χ+(µ)− χ+(ν)

r − 1
+ γ

In fact by using functional analysis arguments we may only consider ergodic
measures ν. Then by using Newhouse works [75, 76] we may compare the local
entropy

(
h− hkµ

)
(ν) with the one-dimensional local growth of ν typical un-

stable manifolds. We conclude by applying the Reparametrization Lemma 7,

where in the estimate
∏

0≤l<n e
K(glx)−kl

r−1 for the number of reparametrizations,

the terms
(∏

0≤l<n e
kl
)1/n and

(∏
0≤l<n e

K(glx)
)1/n

are respectively closed to

eχ
+(ν) and eχ+(µ) for large n. Moreover the scale ε in Lemma 7 corresponds to

the integer kµ.

8.3 ... in higher dimensions

The reparametrization lemma proved in [22] is stronger in some sense : it
reparametrizes two-dimensional dynamical balls. For example we use it with
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Fisher in [36] to prove the existence of symbolic extensions for partially hy-
perbolic sytems with a two dimensional center bundle.

In higher dimensions we conjecture :

Conjecture 2. Any Cr smooth system with r > 1 admits a symbolic extension
π with hπ =

χ+
Λ

r−1
.

To prove the conjecture in higher dimensions, we attempt now to extend
the tools from Chapter 6 to k-discs σ with k > 1. In [28] we prove this
conjecture for skew product circle maps :

Theorem 22. [28] Let f : Td 	 be a Cr, r > 1, map of
the d-torus Td = (R/Z)d of the form f : (x1, x2, · · · , xd) 7→
(f1(x1), f2(x1, x2), · · · , fd(x1, · · · , xd)).

Then f admits a symbolic extension π with hπ =
χ+

Λ

r−1
.
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9.1 SRB and physical measures

One fundamental problem in dynamics consists in understanding the statisti-
cal behaviour of the system. Given a topological system (X, f) we are more
precisely interesting in the asymptotic distribution of the empirical measures(

1
n

∑n−1
k=0 δfkx

)
n
for typical points x with respect to a reference measure. In

the setting of differentiable dynamical systems the natural reference measure
to consider is the Lebesgue measure on the manifold.

The basin of a f -invariant measure µ is the set B(µ) of points whose empiri-
cal measures are converging to µ in the weak-∗ topology. By Birkhoff’s ergodic
theorem the basin of an ergodic measure µ has full µ-measure. An invariant
measure is said physical when its basin has positive Lebesgue measure. We
may wonder when such measures exist and then study their basins.

In the works of Y. Sinai, D. Ruelle and R. Bowen [85, 13, 81] these ques-
tions have been successfully solved for uniformly hyperbolic systems. A SRB
measure of a C1+ system is an invariant probability measure with at least one
positive Lyapunov exponent almost everywhere, which has absolutely con-
tinuous conditional measures on unstable manifolds [89]. Physical measures
may neither be SRB measures nor sinks (as in the famous figure-eight attrac-
tor), however hyperbolic ergodic SRB measures are physical measures. For
uniformly hyperbolic systems, there is a finite number of such measures and
their basins cover a full Lebesgue subset of the manifold. For two Borel subsets
A and B of M we write A

o
⊂ B (resp. A o

= B) when we have Leb(A \B) = 0
(resp. Leb(A∆B) = 0).
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Theorem 23. [82] Let f : M 	 be a C1+ diffeomorphism of a compact smooth
manifold M . We assume that there is an open set U such that Λ =

⋂
n∈N f

nU
is a compact invariant hyperbolic set.

Then there are finitely many ergodic hyperbolic SRB measures (µi)i∈I with

U
o
⊂
⋃
i∈I

B(µi).

There are essentially two methods to build SRB measures in the uniformly
hyperbolic case. The first one uses symbolic dynamics through Markov parti-
tions. In the second method, called the geometrical method, one builds SRB
measures as limits of

(
1
n

∑n−1
k=0 f

k
∗LebDu

)
n
, where Du is a local unstable disc

and LebDu denotes the normalized Lebesgue measure on Du induced by its
inherited Riemannian structure as a submanifold of M .

9.2 Entropy and exponents physically

The following well-known inequality due to Ruelle relates the entropy of a
measure with the sum of its positive exponents :

Theorem 24. [81] For a C1 system (M, f), we have

∀µ ∈M(M, f), h(µ) ≤ χ+
Λ(µ).

For a C∞ map f : M 	 we showed in [30] that from the physical viewpoint
the entropy is larger than or equal to the maximal pointwise exponent χ+

Λ .
For x ∈ M we let pw(x) be the set of accumulation points in M(X) of the
empirical measures

(
1
n

∑
0≤k<n δfkx

)
n
.

Theorem 25. [30] Let f : M 	 be a C∞ map. Then for Lebesgue almost
every point x there exists µx ∈ pw(x) with

h(µx) ≥ χ+
Λ(x).

Of course the inequality does not hold true for all x, e.g. when x is a
periodic point with a positive Lyapunov exponent. However the set of such
points has zero Lebesgue measure. Note that in general we only have χ+

Λ(x) ≤
χ+

Λ(µx). For C1 systems with a dominated splitting, Catsiegeras, Cerminara
and Enrich have established a similar result [46].

Ideas of the proof. The proof of Theorem 25 is based on a control of the dis-
torsion given by Lemma 5 as follows. Let σ : (0, 1)k → M be an embed-
ded k-disc. Consider the projective action PΛk(df) on the projective exterior
bunddle PΛkTM and the associated disc PΛk(dσ). Then we can apply Lemma
5 with the potential φ : v ∈ PΛkTM 7→ ‖Λkdf(v)‖. We get reparametriza-
tions of the dynamical ball such that the Bowen-like property implies that
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σ has bounded distorsion when restricted to the image of a reparametriza-
tion. Then we follows the geometrical method to build SRB measures by
considering µn = 1

n

∑
0≤k<n f

k
∗Lebσ, n ∈ N∗. Following an argument due to

Misiurewicz, for any finite partition P there is a weak limit µ of (µn)n satis-
fying h(µ, P ) ≥ lim supn

1
n

∫
log Lebσ(P n(x)) dLebσ. The bounded distorsion

property allows us to relate the right member of this last inequality with
the Lyapunov exponents along σ. One may conclude the proof by choosing
carefully σ.

As a direct consequence of Theorem 25 we obtain the following lower bound
on the entropy of a physical measure.

Corollary 7. Let µ be a physical measure of a C∞ map f : M 	. Then

h(µ) ≥ χ+
Λ |B(µ),

where χ+
Λ |B(µ) is the essential supremum of χ+

Λ on B(µ).

9.3 SRB measures for Cr surface diffeomorphisms

Ledrappier and Young have shown that the equality case in Ruelle inequality
characterizes SRB measures for C1+ systems.

Theorem 26. Let f : M 	 be a C1+ diffeomorphism. Let µ be a measure
such that µ almost every point has a positive exponent. Then µ is a SRB
measure if and only if h(µ) = χ+

Λ(µ).

Beyond the uniformly hyperbolic case (Theorem 23) existence of SRB mea-
sures and description of their basins are also known for large classes of partially
hyperbolic systems [12, 2, 3]. Corresponding results have been established for
unimodal maps with negative Schwartzian derivative [63]. SRB measures have
been also deeply investigated for parameter families such as the quadratic fam-
ily and Henon maps [60, 7, 9, 8]. For Cr, r > 1, surface diffeomorphisms we
show:

Theorem 27. [33] Let f : M 	 be a Cr, r > 1, surface diffeomor-
phism. There are countably many ergodic SRB measures (µi)i∈I with Λ :=

{χ+(µi), i ∈ I} ⊂
]
R(f)
r
,+∞

[
, such that we have :

•
{
χ > R(f)

r

}
o
= {χ ∈ Λ},

• {χ = λ}
o
⊂
⋃
i,χ+(µi)=λ

B(µi) for all λ ∈ Λ.
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In particular, for C∞ surface diffeomorphisms, Lebesgue almost every point
x with χ+(x) > 0 lies in the basin of an ergodic SRBmeasure. In a forthcoming
paper, for any 1 < r < +∞, we build Cr examples of Cr diffeomorphisms
satisfying χ(x) > 0 for x in a set of positive Lebesgue measure disjoint with
the basins of ergodic SRB measures. In his famous ICM’s talk [86], Viana
conjectured that when there is a set of positive Lebesgue measure with non
zero Lyapunov exponents, then there is an SRB measure. The above results
answer Viana’s conjecture in the case of Cr, r > 1, surface diffeomorphisms.
In the C∞ case the existence of SRB measures has also been obtained in [42]
by using techniques from [43].

We explain now in few lines the main ideas to build a SRB measure under
the assumptions of the Main Theorem. As in the proof of Theorem 25 we first
consider a smooth Cr embedded curve D such that

χ(x, vx) := lim sup
n

1

n
log ‖dxfn(vx)‖ > b >

R(f)

r

for (x, vx) in the unit tangent space T 1D of D with x in a subset B of D with
positive LebD-measure. For x in B we let E(x) be the set of geometric times
of x with respect to D. We show that E(x) has positive upper asymptotic
density for x in a subset A of B with positive LebD-measure by using the global
reparametrization lemma stated in Lemma 8. Let F : PTM 	 be the map
induced by f on the projective tangent bundle PTM . We build a SRB measure
by considering a weak limit µ of a sequence of the form

(
1
]Fn

∑
k∈Fn F

k
∗ µn

)
n

where :

• (Fn)n is a Fölner sequence, so that any weak limit µ is F -invariant,

• for all n, the measure µn is the probability measure induced by LebD on
An ⊂ A, the LebD-measure of An being not exponentially small,

• the sets (Fn)n are in some sense filled with the geometric set E(x) for
x ∈ An.

Finally we check with some Fölner Gibbs property that the limit empirical
measure µ projects to a SRB measure on M by using the Ledrappier-Young
entropic characterization.

To prove the covering property of the basins, we argue by contradiction
by assuming there is a set A ⊂

{
χ+ > R(f)

r

}
of positive Lebesgue measure

disjoint from the basins of the ergodic SRB measures. Then we follow the
previous construction by pushing the Lebesgue measure on a smooth curve D
with LebD(A) > 0, so that the limit empirical measure is an SRB measure. We
get a contradiction by using the absolute continuity of Pesin stable holonomy
at fnx, where x is a LebD-density point of B and n ∈ E(x) is a geometric
time.
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