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Abstract

By using the variational approach, we prove the existence of Sinai-Ruelle-Bowen mea-
sures for partially hyperbolic C 1 diffeomorphisms with mostly expanding properties.
The same conclusion holds true if one considers a dominated splitting E ⊕ F , where
dimE = 1 and F is mostly expanding. When the diffeomorphisms are C 1+α, we prove
the basin covering property for both cases.

1 Introduction

In differentiable ergodic theory, Sinai-Ruelle-Bowen measures are important objects that
have nice variational, geometrical and observable properties. The SRB theory has been
established for uniformly hyperbolic systems by a sequence of works by Sinai, Ruelle and
Bowen in the last seventies [26, 5, 24].

Beyond uniform hyperbolicity, an important notion “partial hyperbolicity” studied by
Brin, Pesin and Sinai [19] attracted people’s attention from the eighties.

Let M be compact d-dimensional Riemannian manifold and f : M → M be a C 1 diffeo-
morphism. For a compact invariant set Λ, a D f -invariant sub-bundle E ⊂ TΛM is said to
be contracted, if there are C > 0 and λ ∈ (0,1) such that for any x ∈Λ and any n ∈N, one has
‖D f n |E(x)‖ ≤Cλn . An invariant bundle E is said to be expanded if it is contracted for f −1. For
two D f -invariant sub-bundles E ,F ⊂ TΛM , one says that E is dominated by F , if there are
C > 0 and λ ∈ (0,1) such that for any x ∈Λ and any n ∈N, one has ‖D f n |E(x)‖‖D f −n |F ( f n x)‖ ≤
Cλn .

We will mainly consider the following partially hyperbolic splitting TΛM = E ⊕F , where
E is contracted and E is dominated by F . It was asked generally how the SRB theory can be
established for general dynamical systems, see for instance [18]. Since partially hyperbolic
diffeomorphisms form an open set in the space of diffeomorphisms, an immediate task is to
establish the SRB theory in the partially hyperbolic setting.

*D. Yang was partially supported by National Key R&D Program of China (2022YFA1005801), by NSFC
12171348 and NSFC 12325106.
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One can define SRB measures from two different points of view: the variational property
and the geometric property. For a C 1 diffeomorphism f , given an invariant measure µ, we
let

λd (x) ≤ ·· · ≤λ2(x) ≤λ1(x)

be the Lyapunov exponents given by Oseledets theroem forµ-almost every point x. By Ruelle
inequality [25], the entropy hµ( f ) ofµ is always bounded from above by

∫ ∑
λi (x)>0λi (x)dµ(x).

The measure µ is said to be a Sinai-Ruelle-Bowen measure, or an SRB measure for short,
when λ1(x) > 0 for µ a.e. x and the equality holds, i.e.

hµ( f ) =
∫ ∑

λi (x)>0
λi (x)dµ(x) > 0, (1)

This is the variational property of SRB measures. When f is a C 1+α diffeomorphism, and if µ
has positive Lyapunov exponents, then by Pesin theory, one knows the existence of unstable
manifolds for µ-almost every point and one may construct measurable partitions subordi-
nate to these unstable manifolds. If the conditional measures of µ along such a measurable
partition are absolutely continuous with respect to the Lebesgue measures of unstable man-
ifolds, then µ is also said to be an SRB measure. These two definitions are compatible be-
cause they are equivalent for C 1+α diffeomorphisms according to a well-know theorem of
Ledrappier and Young [16] (see also [15, 6]). In this context, it follows from Pesin theory, that
an ergodic SRB measure µ, which is hyperbolic, i.e. ∀i ,

∫
λi dµ 6= 0, has a basin of positive

Lebesgue measure.
There are many methods to build SRB measures : by coding with Markov partitions, by

pushing the Lebesgue measure on unstable disk (the so-called geometrical approach), by
inducing with Gibbs-Markov-Young structure, by taking zero-noise limits of random pertur-
bations, ...

We recall now a pionneer work on SRB measures for partially hyperbolic systems. A com-
pact setΛ of M is said to be an attractor of a C 1 diffeomorphism f : M → M if there is a neigh-
borhood U of Λ such that f (U ) ⊂U and

⋂
n∈N f n(U ) =Λ. Recall also that when L : V1 → V2

is a linear isomorphism between two normed linear spaces V1 and V2, the mini-norm or the
co-norm of L is m(L) and is defined by the following way:

m(L) = inf
v∈V1\{0}

‖Lv‖
‖v‖ .

A continuous bundle F ⊂ TΛM , may be extended continuously on a neighborhood U of Λ.
Then one may define the upper assympotic Birkhoff sum of m(D f |F ) as follows:

∀x ∈U , mF (x, f ) := limsup
n→+∞

1

n

n−1∑
i=0

logm(D f |F ( f i x)).

This quantity does not depend on the choice of the extension of F .

Theorem ([2, 3]). Assume thatΛ=⋂
n∈N f nU is an attractor of a C 1+α diffeomorphism f with

a dominated splitting TΛM = E ⊕F with E being uniformly contracting.
Then Lebesgue a.e. x ∈U with

mF (x, f ) > 0 (2)
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lies in the basin of an ergodic hyperbolic SRB measure.
Moreover for any a > 0, the set

{
x ∈U , mF (x, f ) > a

}
may be covered Lebesgue almost ev-

erywhere by the basins of finitely many ergodic hyperbolic SRB measures.

When the set of points x satisfying (2) has positive Lebesgue measure, the partially hyper-
bolic system f is called mostly expanding. The above theorem was proved by Alves, Bonatti
and Viana in [2] with the geometrical approach, when the “limsup” is replaced by the “lim-
inf” . The present statement is due to Alves, Dias, Pinheiro and Luzzato [3]. They assume
that the diffeomorphism is C 1+α and the contracting bundle is necessary because they used
the geometric properties of the SRB measures and Gibbs-Markov-Young structure.

In many recent works the variational property was used to construct SRB measure [9, 11,
12, 10, 17, 23, 7]. In this paper, we will show the existence of SRB measures for C 1 mostly
expanding partially hyperbolic diffeomorphisms by using entropic methods. This avoids the
construction of the Gibbs-Markov-Young structure and proves the existence of SRB mea-
sures for a larger class of diffeomorphisms.

Before stating our main results we introduce the lower empirical exponent χF
min inside F

as follows :

∀x ∈U , χF
min(x, f ) := lim

p→∞
1

p
limsup

n→+∞
1

n

n−1∑
i=0

logm
(
D f p |F ( f i x)

)
.

Contrarily to the quantity mF (x, f ), the exponent χF
min does not depend on the choice of

the Riemannian structure and it is homogenous in f , i.e. ∀p ∈N, χF
min(x, f p ) = pχF

min(x, f ).
When there is no confusion on the map f , we just let χF

min(x) for χF
min(x, f ). We always have

χF
min(x, f ) ≤ limsupn

1
n logm(D f n |F (x)), but this last inequality is a priori strict for a general

point x. When µ is an ergodic measure, µ a.e. point x satisfies

χF
min(x, f ) = lim

n

1

n
logm(D f n |F (x)) =λdim(F )(x) =

∫
λdim(F ) dµ.

Moreover it follows from the definitions that mF (x, f ) ≤ χF
min(x). The equality does not hold

in general, even for typical points x with respect to invariant measures. Let pw(x) be the set
of empirical measures from x, that is the set of limits for the weak-∗ topology, when n goes to
infinity, of the sequence µn

x := 1
n

∑
0≤k<n δ f k x , n ∈N. The exponent χF

min(x, f ) is related with
the Lyapunov exponent of empirical measures as follows (see the appendix):

χF
min(x, f ) = sup

µ∈pw(x)

∫
λdim(F ) dµ. (3)

For all these reasons we prefer to state our main results by using χF
min, but this is mostly a

question of presentation. Indeed one sees easily{
χF

min(·, f ) > 0
}= ⋃

p∈N∗

⋃
0=k<p

f −k {
mF (·, f p ) > 0

}
.

Therefore by applying the above theorem to the powers of f , we get in the same settings the
apparently stronger result, that Lebesgue a.e. x ∈U with χF

min(x, f ) > 0 lies in the basin of an
ergodic hyperbolic SRB measure. When there is no confusion on f , we just write mF (x) and
χF

min(x) for mF (x, f ) and χF
min(x, f ) respectively.
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Theorem A. Assume that Λ = ⋂
n∈N f nU is an attractor of a C 1 diffeomorphism f with a

dominated splitting TΛM = E ⊕F .
If

Leb
({

x ∈U : χF
min(x) > a

})> 0 for some a ≥ 0,

then there is an ergodic measure µ supported on Λ such that∫
λdim(F ) dµ> a

and

hµ( f ) ≥
∫

logJac(D f |F )dµ.

If the unstable index iu(µ) := ]{i ,
∫
λi dµ> 0

}
ofµ satisfies moreover iu(µ) ≤ dim(F ), then

µ is an SRB measure. In particular, this is the case when a ≥ a with

a := sup

{∫
λdim(F ) dµ : µ ∈M

}
and

M :=
{
µ ergodic: hµ( f ) ≥

∫
logJac(D f |F )dµ and iu(µ) > dim(F )

}
.

Corollary B. Assume that Λ = ⋂
n∈N f nU is an attractor of a C 1 diffeomorphism f with a

dominated splitting TΛM = E ⊕F .
If

Leb
({

x ∈U : χF
min(x) > max(a,0)

})> 0,

then f has an ergodic SRB measure µ supported on Λwith
∫
λdim(F ) dµ> max(a,0).

Under the conditions of Corollary B, if the center-unstable index icu(µ) := ]{i ,
∫
λi dµ≥ 0

}
of µ satisfies icu(µ) ≤ dim(F ), the measure µ is an ergodic hyperbolic SRB measure. When f
is C 1+α, its basin has then positive Lebesgue measure. We let now

(a ≤) a := sup

{∫
λdim(F ) dµ : µ ∈M

}
and

M :=
{
µ ergodic: hµ( f ) ≥

∫
logJac(D f |F )dµ and icu(µ) > dim(F )

}
.

Such a physical measure µ exists whenever the set
{

x ∈U : χF
min(x) > max(a,0)

}
has positive

Lebesgue measure. Moreover, the basins of these measures cover this set Lebesgue almost
everywhere:

Corollary C. Assume that Λ = ⋂
n∈N f nU is an attractor of a C 1+α diffeomorphism f with a

dominated splitting TΛM = E ⊕F .
Then Lebesgue a.e. x ∈U withχF

min(x) > max(a,0) lies in the basin of an ergodic hyperbolic
SRB measure µ supported on Λwith

∫
λdim(F ) dµ> max(a,0).

The following properties implies various versions of the above corollaries under stronger
assumptions:
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i. if E is uniformly contracting, then M =; (thus a =−∞),

ii. if limn supx∈Λ
1
n log‖Dx f n |E‖ ≤ 0, then M =; (thus a =−∞),

iii. if dim(E) = 1, then a ≤ 0,

iv. (⇒iii.) a ≤ Λdim(E)−1( f −1)
dim(F ) .

The two first items follow straightforwardly from the definitions. Let us justify the last item.
Recall thatΛk ( f ) := maxl≤k limn→+∞ supx∈M

1
n log‖Λl D f n(x)‖, whereΛl D f denotes the map

induced by f on the l -exterior power of the tangent bundle. By Ruelle inequality [25], any
ergodic measure µ with icu(µ) > dim(F ) satisfies hµ( f ) = hµ( f −1) ≤Λdim(E)−1( f −1). If µ satis-

fies moreover hµ( f ) ≥ ∫
logJac(D f |F )dµ, then we have

∫
λdim(F ) dµ≤ hµ( f )

dim(F ) ≤
Λdim(E)−1( f −1)

dim(F ) .

In the first context (i), Corollary C recovers the aforementionned result of Alves, Dias,
Pinheiro and Luzzato [3]. Existence of SRB measures for dominated splittings satisfying
Leb

({
x : χF

mi n(x) > 0
}) > 0 in the last two contexts (ii) and (iii), where existence of Gibbs-

Markov-Young structure is not known, is new.

We also investigate the finiteness of ergodic SRB measures in the C 1+α setting.

Theorem D. Assume that Λ = ⋂
n∈N f nU is an attractor of a C 1+α diffeomorphism f with a

dominated splitting TΛM = E ⊕ F . For any a > 0, there are only finitely many ergodic SRB
supported on Λ satisfying∫

logm(D f |F )dµ> a and
∫

log‖D f |E‖dµ<−a.

The finiteness property in the aforementioned theorem of Alves, Dias, Pinheiro and Luz-
zato follows then from Theorem D. When dim(E) = 1 with E not necessarily contracting,
we can also conclude that for any a the set {x ∈ U , mF (x) > a} is covered by the basin of
finitely many ergodic SRB measures. Indeed if x ∈ U with mF (x) > a lies in the basin of an
ergodic SRB measure µ we have hµ( f ) ≥ (dimF )

∫
logm(D f |F )dµ> (dimF )a and

∫
λd dµ=∫

log‖D f |E‖dµ as dim(E) = 1 so that Ruelle inequality yields

(dimF )a < hµ( f −1) ≤−
∫

log‖D f |E‖dµ.

However we do not expect the finiteness property if one works with χF
min rather than mF .

The above results also holds true for C 1-local diffeomorphisms. A C 1 map f : M → M is
said to be a C 1-local diffeomorphism if for any x ∈ M , there is a neighborhood V of x such
that f is a diffeomorphism from V to its image. In this context, an invariant measureµ is said
to be an expanding SRB measure when its Lyapunov exponents are all positive and µ satisfies
the entropy formula (1). We refer to [22] for a version of Ledrappier-Young’s theorem for C 2

local diffeomorphisms. For a local diffeomorphism, one defines

χmin(x) := lim
p

1

p
limsup

n→∞
1

n

n−1∑
i=0

logm(D f p ( f i x))

(
= sup
µ∈pw(x)

∫
λd dµ

)
.

5



Theorem E. Assume that f is a C 1-local diffeomorphism. If

Leb
({

x ∈U : χmin(x) > a
})> 0 for some a ≥ 0,

then f has an ergodic SRB measure with
∫
λi dµ> a for any i .

Moreover, if f is C 2, then Lebesgue a.e. x ∈ M with χmin(x) > 0 lies in the basin of an
expanding SRB measure.

Acknowledgements.

We are grateful to J. Chen for his help in ergodic theory, for J. Zhang and Z. Mi for their
help to improve the presentation.

2 Construction of SRB measure

In [7] the first author introduced an entropic variation of the so-called geometric ap-
proach for building SRB measures for C r , r > 1, smooth surface diffeomorphisms. We follow
here the same strategy. A key property to construct SRB measures is the bounded distor-
sion property, which follows here from the domination property whereas it is ensured by the
smoothness in [7].

The geometric approach for uniformly hyperbolic systems consists in considering a weak
limit of

( 1
n

∑n−1
k=0 f k∗ LebDu

)
n

, where Du is a local unstable disk and LebDu denotes the normal-
ized Lebesgue measure on Du induced by its inherited Riemannian structure as a submani-
fold of M .

In this section we prove Theorem A. Without loss of generality (consider some power of
f ) we may assume that the set

{
(x ∈U , mF (x) > a

}
with a ≥ 0 has positive Lebesgue mea-

sure. Then, by a standard Fubini argument, we may consider a smooth disk D tangent to
a small cone around the bundle F such that LebD

({
(x ∈U , mF (x) > a

}) > 0. In [2] the au-
thors show by using a bounded geometry property (see Lemma 2.3 below) at Pliss times for(
logm

(
D f |F ( f k x)

))
k

that any weak-∗ limit of
( 1

n

∑n−1
k=0 f k∗ LebD

)
n

admits some ergodic SRB

component. In fact they need to assume LebD
({

(x ∈U , mF (x) > 0
})> 0 with

mF (x) := liminf
n→+∞

1

n

n−1∑
i=0

logm(D f |F ( f i x)).

We build SRB measures as weak-∗ limit of Følner empirical measures, i.e. limit µ of a

sequence of the form
(

1
]Q`

∑
k∈Q`

f k∗ µ`
)
`

with n`
`−→+∞ such that:

• (Q`)` with Q` ⊂ [0,n`) is a Følner sequence, so that the weak limit µ will be invariant
by F ,

• for all `, the measure µ` = LebD (·)
LebD (Λ`) is the probability measure induced by LebD on

Λ` ⊂ {mF > a}, the LebD -measure ofΛ` being not exponentially small in n`.
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• the sets (Q`)` are in some sense filled with the set P (x) of Pliss times for x ∈Λ`. Then
the measure µ has only positive Lyapunov exponent inside F .

Somehow, this set Λ` (which follows from a Borel-Cantelli argument) is the price to pay to
deal with mF rather than mF . As it has not exponentially small measure, it will not affect our
lower estimate on the entropy of µ. Finally we check some Følner Gibbs property for µn : for
any ε> 0 we have for any partition A with small enough diameter and for all ` large enough:

∀x ∈Λ`, LebD
(
A Q`(x)∩Λ`

)≤ eεn`
∏

k∈Q`

Jac
(
D f |F ( f k x)

)
,

where A Q`(x) denotes the atom of the iterated partition A Q` := ∨
k∈Q`

f −kA . Then by a
classical entropy computation, we conclude that µ satisfies hµ( f ) ≥ ∫

logJac(D f |F )dµ.

2.1 Submanifolds tangent to a cone around F

Without loss of generality one may assume that F can be extended continuously on U
and that E can be extended continuously and invariantly on U . For any point x ∈U , for any
θ > 0, we define the cone C F

θ
(x) as follows:

C F
θ (x) = {

v = vE + vF ∈ Tx M : ‖vE‖ < θ‖vF‖} .

By changing the metric if necessary,one can assume that for any x ∈U ,

D f (C F
θ (x)) ⊂C F

θ/2( f x).

A submanifold∆⊂U (maybe with boundary) is said to be tangent to C F
θ

if for any x ∈ D , one
has that Tx∆⊂C F

θ
(x). If ∆ is tangent to C F

θ
, then f (∆) is tangent to C F

θ/2.
For a submanifold ∆ we let Leb∆ and d∆ be respectively the Lebesgue measure and the

Riemannian distance on ∆ inherited from the induced Riemannian structure on ∆.

Lemma 2.1. For any ε > 0, there are δε > 0 and θε > 0 such that for any submanifold ∆

tangent to C F
θε

of dimension dim(F ), for any x ∈ ∆, for any n ∈ N and for any subset Γ ⊂{
y ∈∆ : d( f i y, f i x) < δε, 0 ≤ i ≤ n −1

}
, we have:

e−nεLeb f n (∆)( f n(Γ)) ≤ Leb∆(Γ)
n−1∏
i=0

Jac
(
D f |F ( f i x)

)
≤ enεLeb f n (∆)( f n(Γ)).

Proof. Given ε > 0, there is θε > 0, such that for any submanifold ∆̃ tangent to C F
θε

and for

any z ∈ ∆̃, we have:

e−ε/2 ≤ Jac
(
D f |Tz ∆̃

)
Jac

(
D f |F (z)

) ≤ eε/2. (4)

Then we may choose δε > 0 such that any z, z ′ ∈U with d(z, z ′) < δε satisfy:

e−ε/2 ≤ Jac
(
D f |F (z)

)
Jac

(
D f |F (z ′)

) ≤ eε/2. (5)
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By change of variables, we get therefore for any x ∈U and for any subset Γ
of

{
y ∈∆ : d( f i (y), f i x) < δε, 0 ≤ i ≤ n −1

}
:

Leb∆(Γ) =
∫

f n (Γ)
Jac(D f −n |Tz f n (∆))dLeb f n (∆)(z)

=
∫

f n (Γ)

n−1∏
i=0

1

Jac
(
D f |T f i ( f −n z) f i (∆)

)dLeb f n (∆)(z).

Since f i ( f −n z) is δε-close to f i x and f i∆ is tangent to C F
θε

, we conclude with (5) and (4) that:

e−nεLeb f n (∆)
(

f n(Γ)
)≤ Leb∆(Γ)

n−1∏
i=0

Jac
(
D f |F ( f i x)

)
≤ enεLeb f n (∆)

(
f n(Γ)

)
.

2.2 Pliss times

Let a′′ > a with Leb
({

(x ∈U , mF (x) > a′′})> 0 and fix a′ ∈]a, a′′[. An integer n ∈N is said
to be a Pliss time at x ∈U if for any 0 ≤ j ≤ n −1, one has

1

n − j

n− j−1∑
i=0

logm
(
D f |F ( f j+i x)

)
≥ a′.

This notion of Pliss times depends on the fixed parameter a′. By convention, n = 0 is a Pliss
time. We denote by P (x) ⊂ N the set of Pliss times at x. Clearly the set of Pliss time is mea-
surable, i.e. for all n ∈N, the set {x ∈ M , n ∈ P (x)} is measurable. For any subset T ⊂N and
for any n ∈N, we let

dn(T ) = #(T ∩ [0,n))

n
.

The upper density d(T ) of T is then defined as

d(T ) = limsup
n→∞

dn(T ).

We state the following version of Pliss Lemma [20] :

Lemma 2.2 (Lemma 3.1 in [2]). There is a constant α=α(a′′, a′) ∈ (0,1] such that any x with
mF (x) > a′′ satisfies d(P (x)) ≥α.

The dynamic on a disk∆x 3 x tangent to a cone around F is backward contracting at Pliss
times n ∈ P (x). Moreover the geometry of f n∆x is bounded at f n x, i.e. it contains a disc
∆ f n x 3 f n x with lower bounded size. An embedded disc D is said centered at x with radius δ
when dD (x, y) = δ for any y in the boundary of D .

Lemma 2.3 (Lemma 4.2 in [4]). There is δ0 > 0 and θ0 > 0 and N ∈N such that for any disk∆⊂
U of radius δ0 tangent to C F

θ0
, for any x ∈∆with d∆(x,∂∆) ≥ δ0

2 , for any Pliss time P (x) 3 n > N ,
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the image f n(∆) contains a disk ∆ f n x centered at f n x with radius δ0 such that f −i (∆ f n (x))
decays exponentially:

∀0 ≤ i ≤ n ∀y, z ∈∆ f n x , d f −i (∆ f n x )

(
f −i x, f −i y

)
≤ e−i ad∆ f n x

(y, z). (6)

Moreover when f is C 1+α there is a constant C > 1 such that

∀y, z ∈∆ f n x ,
Jac f −n |Ty∆ f n x

Jac f −n |Tz∆ f n x

<C . (7)

For two points x, y with d(x, y) less than the radius of injectivity Ri n j of M , we write
x ∼F y when the unique geodesic joining x and y is tangent to C F

θ0
. Then we may find

δ1 < min(Ri n j ,δ0) (depending on θ0) so small that if x ∼F y , d(x, y) < δ1 and d( f x, f y) < δ1

then f (x) ∼F f (y). For general disks tangent to C F
θ0

it may happen that x �F y for some
points x and y in the disk. We will work with specific disks, that may be written through the
exponential map as the graph of a Lipschitz map over F . For δ1 small enough, any disk cen-
tered at x tangent to C F

θ1
for any θ1 < θ0 of radius δ0 contains a subdisk of the form expx(Γg )

where Γg is the graph of a θ1-Lipshitz map g : F (x)δ1 → E(x) with g (0) = 0 where F (x)δ1 de-
notes the ball centered at 0 of radius δ1 in F (x) ⊂ Tx M . Fix finally θ1 < θ0 and δ1 so small
that any two points y, z in expx(Γg ) satisfy y ∼F z. The parameters θ0, θ1,δ0,δ1 being now
fixed, such a disk expx(Γg ) is called an F -disk at x. In Lemma 2.3 the disks ∆ and ∆ f n x may
be chosen to be F -disks and we will assume it is the case when applying this lemma in the
following.

Lemma 2.4. Let ∆ be an embedded disk. There is 0 < δ2 < δ1 such that if ∆′ ⊂ ∆ and ∆′′ ⊂ ∆
are F -disks centered at y ′ and y ′′, and if y ′ and y ′′ lie in a ball B(x,δ) with δ< δ2, then :

• either ∆′∩B(x,δ) =∆′′∩B(x,δ),

• or ∆′∩∆′′ =; and there is z ′ ∈∆′∩B(x,2δ) and z ′′ ∈∆′′∩B(x,2δ) with z �F z ′.

Proof. For δ2 ¿ δ1 small enough, expx
−1(∆′) (resp. expx

−1(∆′) ) is a graph of a 2θ1-Lipschitz
maps g ′ (resp. g ′′) from a neighborhood of F (x)δ1/2 to E(x) and B(x,δ2)∩Γg ′ ⊂ Γg ′|

F (x)δ1/2

(resp. idem for g ′′). If these two graphs are not disjoint, they coincide on their intersection
because they are subdisks of ∆. Therefore ∆′∩B(x,δ2) = ∆′′∩B(x,δ2). If they are disjoint a
geodesic path γ with γ(0) = x and γ′(0) ∈ E(x) intersect transversally ∆′ and ∆′′ in B(x,2δ). If
we let z ′ and z ′′ these intersections then we have z �F z ′.

2.3 Følner empirical measures

By Fubini’s theorem, we may find an F -disk D tangent to C F
θ

with θ as in Lemma 2.3 and
with LebD ({x ∈U : mF (x) > a′′}) > 0.

For a subset E ⊂N∗, we let ∂E be the symmetric difference of E and E +1. Given m ∈N,
for any subset T ⊂N, denote by T m = {n ∈N : ∃t1 ∈ T, t2 ∈ T, s.t . t1 ≤ n ≤ t2 and t2 − t1 ≤ m}.
By applying [7, Lemma 2] to the measurable set of Pliss times, we get:

Theorem 2.5. There are a sequence {n`} of positive integers, a sequence of subsets {Λ`} in D ∩
{mF > a′′} indexed by ` ∈N such that

9



1. lim`→∞ n` =∞;

2. The measure ofΛ` satisfies:

lim
`→∞

1

n`
logLebD (Λ`) = 0,

3. For each `, there is a subset Q` ⊂ [0,n`) s.t.

liminf
`→∞

#Q`

n`
≥α,

where α is the Pliss density as in Lemma 2.2.

4. {Q`} has the Følner property:

limsup
`→∞

#∂Q`

n`
= 0

5. For any x ∈Λ`, one has that ∂Q` ⊂ P (x) for any x ∈Λ`.

6. P (x) is uniformly dense in Q` onΛ`, i.e.,

limsup
m→∞

limsup
`→∞

sup
x∈Λl

#(Q` \ P m(x))

n`
= 0

7. {Q`} has uniform lower density in the following sense:

liminf
`→∞

inf
x∈Λ`

#(P (x)∩Q`)

n`
≥α.

Observe that we get from Item 2 and Item 3 that lim`→∞ 1
#Q`

logLebD (Λ`) = 0.

2.4 Følner Gibbs Property

Assume that A is a finite partition of M . For each x ∈ M , denote by A (x) the atom of A

containing x. Given two finite partitions A and B, one defines the refinement of A and B:

A
∨

B = {A∩B : A ∈A , B ∈B}.

One extends this definition to a finite sequence of partitions A1
∨

A2
∨ · · ·∨An inductively.

For a finite subsetM⊂N∪ {0}, we let

AM = ∨
n∈M

f −n(A ).

Let D , {n`}, {Λ`} and {Q`} as defined in the previous subsections. The aim of this subsec-
tion is to prove the following Gibbs property:
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Theorem 2.6. For any ε> 0, there is δ> 0 such that for any partition A of M with Diam(A ) <
δ, there is L ∈N such that for any `> L, for any x ∈Λ`, one has that

LebD (A Q`(x)∩Λ`) ≤ eε#Q`e
−∑

i∈Q`
logJac

(
D f |F ( f i x)

)
.

Recall the numbers θε and δε depending on ε as in Lemma 2.1. We will prove the follow-
ing intermediate proposition:

Proposition 2.7. For any ε, there are δ> 0 and C > 1 satisfying the following property.
Let n ∈ N. Assume that Q = ∪n−1

j=0 [a j ,b j ) satisfies a0 = 0 and ai+1 > bi > ai . For any par-

tition A of M with Diam(A ) < δ, for any x ∈U and for any F -disk ∆ centered in A Q (x) and
tangent to C F

θε
we have with ∆Q := {z ∈∆ : a j ,b j ∈ P (z), ∀0 ≤ j ≤ n −1} :

Leb∆
(
A Q (x)∩∆Q)≤C n ·e2ε·bn−1 e

−∑n−1
j=0

∑b j −1

i=a j
logJac

(
D f |F ( f i x)

)
.

Proof of Proposition 2.7. We argue by induction on n. For n = 1, the set of times Q is reduced
to an interval Q = [a0,b0) = [0,b0). By taking C large enough we may assume b0 > N with N
as in Lemma 2.3. Take Γ=A Q (x)∩∆Q = {z ∈∆ : b0 ∈ P (z)}∩A [0,b0)(x).

Claim.
∀z ∈ Γ, Γ⊂ f −b0 (∆ f b0 z).

Proof of the claim. Let z, z ′ ∈ Γ. For δ small enough, we have d∆(z,∂∆),d∆(z ′,∂∆) > δ0/2 and
d( f k z, f k z ′) < δ2/2 for k = 0, · · · ,b1. Recall that ∆ f b0 z ⊂ f b0∆ denotes the F -disk at f b0 (z)
given by Lemma 2.3. Then by Lemma 2.4

• either ∆ f b0 z ∩A ( f b0 x) =∆ f b0 z ′ ∩A ( f b0 x), then f b0 z ′ lies in ∆ f b0 z

• or ∆ f b0 z ∩∆ f b0 z ′ =;.

In this last case there is a geodesic path transverse to C F
θ′ joining f b0 y ∈ ∆ f b0 z ∩B( f b0 x,δε)

and f b0 y ′ ∈ ∆ f b0 z ′ ∩B( f b0 x,δε). As the disks ∆ f b0 z ′ and ∆ f b0 z are backward contracting, we

have d( f k y, f k y ′) < δ1 for k = 0, · · · ,b0, whenever δ is small enough. Because they lie in the
same F -disc ∆ we have y ∼F y ′. It follows from the choice of δ1 that we have also f b0 y ∼F

f b0 y ′. This contradicts the fact that the geodesics joining these two points is transverse to
C F
θ0

.

As ∆ is tangent to C F
θε

, we get for δ< δε by Lemma 2.1:

Leb∆(Γ) ≤ Leb f b0 (∆)

(
f b0 (Γ)

)
·eb0ε ·

(
b0−1∏
i=0

Jac
(
D f |F ( f i x)

))−1

.

Then it follows from the above claim that for any z ∈ Γ:

Leb∆(Γ) ≤ Leb f b0 (∆)

(
∆ f b0 z

)
·eb0ε ·

(
b0−1∏
i=0

Jac
(
D f |F ( f i x)

))−1

(8)

≤C ·eb0εe
−∑b0−1

i=a0
logJac

(
D f |F ( f i x)

)
,
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where the constant C is an upper bound for the Lebesgue measure of F -disks. This concludes
the case n = 1.

Now we assume the statement is true for n and for any F -disk ∆ and we check the state-
ment for n+1. Let Q =∪n−1

j=0 [a j ,b j )∪[an ,bn), Q1 =∪n
j=1[a j ,b j ) and Q2 =∪n

j=1[a j −a1,b j −a1)

and let ∆ be an F -disk. Again, we may assume b j − a j > N for any j . Let z ∈ ∆∩A [0,b0)(x)
with b0 ∈ P (z). By Lemma 2.4 there are finitely many points y1, y2, · · · , ym ∈A Q (x)∩∆Q such
that

• ∆ f a1 y1 ,∆ f a1 y2 , · · · ,∆ f a1 ym ⊂ f a1−b0 (∆ f b0 z) are mutually disjoint;

• f a1
(
A Q (x)∩∆Q

)⊂⋃m
i=1∆

Q2
f a1 yi

.

Claim. For some constant C ′ depending on ε, we have

m∑
i=1

(
a1−1∏
j=b0

Jac
(
D f |F ( f j yi )

))−1

≤C ′eε(a1−b0). (9)

Proof of the Claim. Since a1 ∈ P (yi ), by (6), there is K ∈N depending on ε, such that

f −a1+b0 (∆ f a1 yi ) ⊂
{

y ∈∆ f b0 z : d( f i y, f i yi ) < δε, b0 ≤ i ≤ max(0, a1 −K )
}

.

By changing the constant C ′ we can assume a1 > K . Thus, by applying Lemma 2.1, we get for
some constants B ,B ′ depending on ε:

Leb∆
f b0 z

(
f b0−a1

(
∆ f a1 yi

))
(10)

≥ Be−ε(a1−b0−K )

(
a1−K∏
j=b0

Jac
(
D f |F ( f j yi )

))−1

≥ B ′e−ε(a1−b0)

(
a1−1∏
j=b0

Jac
(
D f |F ( f j yi )

))−1

.

By the mutual disjointness of {∆ f a1 yi }m
i=1, we conclude

D ≥ Leb
(
∆ f b0 z

)
≥

m∑
i=1

Leb∆
f b0 z

(
f b0−a1 (∆ f a1 yi )

)
≥ B ′e−ε(a1−b0)

m∑
i=1

(
a1−1∏
j=b0

Jac
(
D f |F ( f j yi )

))−1

.

This concludes the proof of the claim with C ′ = D/B ′, where D is an upper bound of the
volume of F -disks.

We are now in a position to conclude the proof by induction of Proposition 2.7. By the
induction hypothesis, we have for each 1 ≤ i ≤ m:

Leb∆ f a1 yi

(
A Q2 ( f a1 x)∩∆Q2

f a1 yi

)
≤C n−1e2ε(bn−a1)e

−∑n
j=1

∑b j −a1−1

i=a j −a1
logJac

(
D f |

F ( f i+a1 x)

)
(11)

=C n−1e2ε(bn−a1)e
−∑n

j=1

∑b j −1

i=a j
logJac

(
D f |F ( f i x)

)
.
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We conclude with some constant C ′′ depending on ε that

Leb∆
(
A Q (x)∩∆Q)

≤ Leb∆
f b0 z

(
f b0 (A Q (x)∩∆Q )

)
eε(b0−a0)

(
b0−1∏
i=a0

Jac
(
D f |F ( f i x)

))−1

as in (8)

≤
(

m∑
i=1

Leb∆
f b0 z

(
f b0−a1

(
A Q2 ( f a1 x)∩∆Q2

f a1 yi

)))

×eε(b0−a0)

(
b0−1∏
i=a0

Jac
(
D f |F ( f i x)

))−1

by definition of yi

≤C ′′
(

m∑
i=1

Leb∆ f a1 yi

(
A Q2 ( f a1 x)∩∆Q2

f a1 yi

)(
a1−1∏
j=b0

Jac
(
D f |F ( f j yi )

))−1)

×eε(a1−a0)

(
b0−1∏
i=a0

Jac
(
D f |F ( f i x)

))−1

as in (10)

≤C ′′C n−1eε(2(bn−a1)+(a1−a0))e
−∑n

j=0

∑b j −1

i=a j
logJac

(
D f |F ( f i x)

)
m∑

i=1

(
a1−1∏
j=b0

Jac
(
D f |F ( f j yi )

))−1

by (11)

≤C ne2ε(bn−a0)e
−∑n

j=0

∑b j −1

i=a j
logJac

(
D f |F ( f i x)

)
by (9) and by taking C ≥C ′C ′′.

Proof of Theorem 2.6. Without loss of generality we can assume that D is a F -disc tangent to
C F
θε

(indeed for k large enough f k D is tangent to C F
θε

and we may then cover f k D by finitely
many F -disks).

Note that any integer in the boundary of Q` is a Pliss time for any point x ∈Λ`. Thus, by
Proposition 2.7, we get

LebD (A Q`(x)∩Λ`) ≤C∂Q`e2εn`e
−∑

i∈Q`
logJac

(
D f |F ( f i x)

)
.

By Item 4 of Theorem 2.5, for ` large enough, one has that

C∂Q` ≤ eεn` .

By combining with Item 3 of Theorem 2.5, we get finally for ` large enough

LebD
(
A Q`(x)∩Λ`

)≤ e3εn`e
−∑

i∈Q`
logJac

(
D f |F ( f i x)

)
.

2.5 Ergodic properties of the limit empirical measure µ

To conclude the proof of Theorem A we just apply the abstract formalism established in
Section 1 and 2 of [7].
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We consider a weak-∗ limit µ of a sequence
(

1
]Q`

∑
k∈Q`

f k∗
LebD (·)

LebD (Λ`)

)
`

with n`
`−→ +∞. It

follows from the Følner Gibbs property proved in Theorem 2.6 and Proposition 3 in [7] that

h(µ) ≥
∫

logJac
(
D f |F

)
dµ.

Observe also that for any consecutive integers k < l in P (x) we have∑
k≤i<l

logm
(
D f |F ( f i x)

)
≥ (l −k)a′,

i.e. following the terminology of [7] the set of Pliss time is a′-large with respect to the con-
tinuous observable x 7→ logm

(
D f |F (x)

)
. By Lemma 4 in [7], the limit measure µ satisfies for

µ-a.e. x:
mF (x) = mF (x) ≥ a′.

Equivalently, for any ergodic component ν of µ, we have∫
λdim(F ) dν≥

∫
logm(D f |F )dν≥ a′

By harmonicity of the Kolmogorov entropy, there is at least one ergodic component ν of
µ, such that h(ν) ≥ ∫

logJac
(
D f |F

)
dν. This ergodic measure ν satisfies the conclusion of

Theorem A.

3 The basin

In this section we assume f of class C 1+α and we prove Corollary C. More precisely we
will show that Lebesgue almost every point x with χF

mi n(x) > max(a,0) lies in the basin of an
ergodic hyperbolic SRB measure. To this end we adapt a standard argument involving the
absolute continuity of Pesin stable manifolds by introducing dynamical density points on
Pliss times.

3.1 Dynamical density points on Pliss times

Pugh and Shub introduced in [21] dynamical density points for strong unstable manifold
(one can also see [12, Subsection 2.5]). This notion generalizes the usual concept of Lebesgue
density points in hyperbolic dynamics and is specially relevant when the unstable manifolds
have dimension larger than one because the shape of an unstable ball may be not preserved
by backward iteration.

In this subsection, we assume that f is a C 1+α diffeomorphism as above, i.e. f admits an
attractorΛ=⋂

n∈N f nU with a dominated splitting TΛM = E⊕F . For fixed a′′ > a′ > a > 0 and
for x ∈U with mF (x) > a′′ we consider the associated set of Pliss times P (x) as in Subsection
2.2. Let Γ be a subset of

{
mF > a′′} and let D be a smooth disk tangent to C F

θ0
with θ0 as in

Lemma 2.3 satisfying LebD (Γ) > 0.
For n ∈ P (x) with mF (x) > a′′ and for δ > 0 we define the following dynamical balls:

BD,n(x,δ) := f −nB f n (D)
(

f n x,δ
)
. To simplify the notations we write BD,n(x), B̂D,n(x), ̂̂B D,n(x)
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for the dynamical balls BD,n

(
x, δ0

3

)
, BD,n

(
x, 2δ0

3

)
and BD,n (x,δ0) respectively. Then x is said

to be a dynamical density point of Γwith respect to D if

lim
n→∞, n∈P (x)

LebD
(
BD,n(x)∩Γ)

LebD
(
BD,n(x)

) = 1.

In this context, Alves and Pinheiro [4, Proposition 5.5] proved the existence of one dy-
namical density point x with respect to D . Here we improve this result as follows :

Theorem 3.1. LebD -a.e. x ∈ Γ is a dynamical density point of Γwith respect to D.

Before proving Theorem 3.1, we state some properties of the dynamical balls in our con-
text. We omit the proofs, which follow from the uniform case [12, Lemma 2.19].

Lemma 3.2. There is K > 1, such that for any z ∈ D with mF (z) > a′′ and for any n ∈ P (z),

LebD

( ̂̂B D,n(z)
)
≤ K LebD

(
BD,n(z)

)
.

Lemma 3.3. For any z1, z2 ∈
{
mF > a′′}, for any n1 ∈ P (z1) and n2 ∈ P (z2) satisfying n1 ≤ n2, if

BD,n1 (z1)∩ B̂D,n2 (z2), then BD,n2 (z2) ⊂ ̂̂B D,n1 (z1).

Proof of Theorem 3.1. It suffices to prove that for LebD -a.e. x ∈ Γ, one has that

liminf
n→∞, n∈P (x)

LebD (BD,n(x)∩Γ)

LebD (BD,n(x))
= 1.

Given ρ ∈ (0,1), we let

Γρ :=
{

z ∈ Γ : liminf
n→∞, n∈P (x)

LebD
(
BD,n(x)∩Γ)

LebD
(
BD,n(x)

) < ρ
}

.

It is enough to show LebD (Γρ) = 0 for any ρ ∈ (0,1). We argue by contradiction by considering
some ρ ∈ (0,1) with LebD (Γρ) > 0. Fix ε > 0 with ρ(1+ε) < 1. We choose an open neighbor-
hood V of Γρ in D such that

LebD (V ) < (1+ε)LebD (Γρ).

We consider the covering V of Γρ defined as follows :

V :=
{

BD,n(z) ⊂V : z ∈ Γρ, n ∈ P (z),
LebD

(
BD,n(x)∩Γ)

LebD
(
BD,n(x)

) < ρ
}

.

We build by induction an increasing sequence of integers (n`)`, subfamilies (V`)` of V

and finite subsets (Z`)` of Γρ such that

(i) the elements of
⋃
`Vl are pairwise disjoint,

(ii) for any ` the elements of V` are of the form BD,n`(z`) with z` ∈ Z` and n` ∈ P (z`),

(iii) if BD,n(z) ∈ V with n`−1 ≤ n < n`, then B̂D,n(z)∩B 6= ; for some B ∈⋃
`′<`V`′ .
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Initialization: We find a minimal integer n1 such that there is z1
1 ∈ Γρ with n1 ∈ P (z1

1) sat-
isfying BD,n1 (z1

1) ∈ V . After z1
1 , we choose z1

2 such that BD,n1 (z1
1)∩ B̂D,n1 (z1

2) = ;. If no such
z1

2 , we stop this process; if we can find such z1
2 , then we choose BD,n1 (z1

2) ∈ V . Assume that
{BD,n1 (z1

1),BD,n1 (z1
2), · · · ,BD,n1 (z1

j )} has been found. We choose z1
j+1 such that BD,n1 (z1

i ) ∈ V

and BD,n1 (z1
i )∩ B̂D,n1 (z1

j+1) =; for any 1 ≤ i ≤ j . If no such z1
j+1, we stop this process. We let

k(1) be the stopping time and we put

Z1 :=
{

z1
1 , z1

2 , · · · , z1
k(1)

}
and

V1 :=
{

BD,n1

(
z1

1

)
,BD,n1

(
z1

2

)
, · · · ,BD,n1

(
z1

k(1)

)}
.

Induction step: Assume n1 < n2 < ·· · < n`, Z1, Z2, · · · , Z` and V1,V2, · · · ,V` have been found.
We choose a minimal n`+1 > n` such that there is z`+1

1 satisfying BD,n`+1 (z`+1
1 ) ∈ V , but

B̂D,n`+1 (z`+1
1 )∩B =; for any B ∈ V1 ∪V2 ∪·· ·∪V`. Assume that z`+1

1 , z`+1
2 , · · · , z`+1

j have been

fixed. We choose z`+1
j+1 such that BD,n`+1 (z`+1

i ) ∈ V and BD,n`+1 (z`+1
i )∩ B̂D,n`+1 (z`+1

j+1 ) = ; for

any 1 ≤ i ≤ j and B̂D,n`+1 (z`+1
j+1 )∩B =; for any B ∈ V1 ∪V2 ∪·· ·∪V`. If no such z`+1

j+1 , we stop
the process. We let k(`+1) be the stopping time and we put

Z`+1 :=
{

z`+1
1 , z`+1

2 , · · · , z`+1
k(`+1)

}
and

V`+1 :=
{

BD,n`+1 (z`+1
1 ),BD,n`+1 (z`+1

2 ), · · · ,BD,n`+1 (z`+1
k(`+1))

}
.

Claim. LebD (Γ̃ρ) = 0, where Γ̃ρ := Γρ \
(⋃∞

n=1
⋃

B∈Vn B
)
.

Proof of the Claim. Fix some integer `. For z ∈ Γ̃ρ, the diameter of BD,n(z) ∈ V goes to 0 when
n ∈ P (z) goes to infinity. In particular for n large enough we have

∀B ∈ ⋃
`′≤`

V`′ , B ∩ B̂D,n(z) =;.

Fix such an integer n = n(z,`). Together with (iii) there is `′′ > ` with n`′′ ≤ n and B ∈ V`′′

such that
B ∩ B̂D,n(z) 6= ;.

By Lemma 3.3, we get BD,n(z) ⊂ ̂̂B D,n(z), so that

Γ̃ρ ⊂
∞⋃

k=`+1

⋃
z∈Zk

̂̂B D,nk (z).

By Lemma 3.2, there is K > 1 such that

LebD

( ̂̂B D,nk (z)
)
≤ K LebD

(
BD,nk (z,δ)

)
.

Since the elements in
⋃

k Vk are mutually disjoint, we have
∑

k∈N
∑

z∈Zk
LebD (BD,nk (z)) <∞.

Thus

LebD (Γ̃ρ) ≤
∞∑

k=`+1

∑
z∈Zk

LebD

( ̂̂B D,nk (z)
)
≤ K

∞∑
k=`+1

∑
z∈Zk

LebD (BD,nk (z)) → 0, as `→∞.

This implies that LebD (Γ̃ρ) = 0 and completes the proof of the claim.

16



It follows from the above Claim, that

LebD (Γρ) =
∞∑

n=1

∑
B∈Vn

LebD (B ∩Γρ) ≤
∞∑

n=1

∑
B∈Vn

LebD (B ∩Γ)

≤ ρ ·
∞∑

n=1

∑
B∈Vn

LebD (B) ≤ ρ ·LebD (V ) ≤ ρ(1+ε)LebD (Γρ).

As we fixed ε with ρ(1+ε) < 1 we conclude LebD (Γρ) = 0. The proof is thus complete.

We will use the following corollary of Theorem 3.1, which is a direct application of Egorov’s
theorem.

Corollary 3.4. For any ε> 0, there is a measurable set Γ0 ⊂ Γ satisfying LebD (Γ \Γ0) < ε such
that for any δ> 0, there is N = N (δ) such that for any x ∈ Γ0 for any n > N , n ∈ P (x), it holds
that ∣∣∣∣LebD (BD,n(x)∩Γ)

LebD (BD,n(x))
−1

∣∣∣∣< δ.

3.2 Proof of Corollary C

It is enough to show that any subset Γ of
{
mF > max(a,0)

}
with positive Lebesgue mea-

sure has a nonempty intersection with the basin of an ergodic SRB hyperbolic measure sup-
ported onΛ.

We may now repeat the construction in Theorem A. Let us recall the main steps. Without
loss of generality we may assume Γ⊂ {

mF > a′′} for some a′′ > a′ > max(a,0). Take a disk D
tangent to C F

θ0
with LebD (Γ) > 0 Recall P (x) denotes the set of Pliss times and consider the

setsΛ` ⊂ M and Q` ⊂N as in Theorem 2.5. Without loss of generality we can assumeΛ` ⊂ Γ0

where Γ0 is the set given by Corollary 3.4. Set

µ` =
LebD (·)

LebD (Λ`)
,

ν` =
1

#Q`

∑
i∈Q`

f i
∗µ`,

and

η` =
1

#Q`

∫ ∑
i∈P (x)∩Q`

δ f i x dµ`.

By taking a subsequence we may assume ν` and η` are both converging to µ and η re-
spectively, when ` goes to infinity. Clearly η is a component (in general not invariant) of the
invariant measure µ and by Item 7 of Theorem 2.5 we have

η(M) ≥ lim
`
η`(M),

≥ liminf
`→∞

infx∈Λ` #P (x)∩Λ`
#Q`

,

≥α.
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From the proof of Theorem A, any limit µ of (µ`)` satisfies

λdim(F ) > max(a,0) µ-a.e.

and

hµ( f ) ≥
∫

logJac(D f |F )dµ.

By definition of a, an ergodic component ξ of µ either satisfies hξ( f ) < ∫
logJac(D f |F )dξ or

icu(ξ) = dim(F ), i.e. λdim(F )+1(x) < 0 for ξ-a.e. x. In this last case we have also by Ruelle
inequality hξ( f ) ≤ ∫ ∑

λi (x)>0λi (x) dξ(x) = ∫
logJac(D f |F )dξ. But hµ( f ) ≥ ∫

logJac(D f |F )dµ,
so that the first case does not occur and thus any ergodic component ξ of µ is an ergodic
SRB hyperbolic component. As already mentioned these measures are physical, thus there
are at most countably many of them. The measure µ is a convex combination of these er-
godic hyperbolic SRB measures (µi )i∈N, i.e. there is λi > 0, i ∈ N, with µ = ∑

i λiµ
i . There

is a Pesin block R with η(R) > 0 such that the size of stable manifolds at x ∈ R has uniform
size and these stable manifolds on R form an absolutely continuous foliation. Let i with
µi (R) > 0. Let W u(x) denotes the Pesin local unstable manifold at a µi -typical point x. We
denote the basin of µi by B(µi ). By the geometric property of the SRB measure µi , the set
Ai

R := {
x, LebW u (x)

(
B(µi )∩R

)> 0
}

has positive µi -measure, therefore positive η-measure.
It follows from the definition of η that there is x ∈ Ai

R , y` ∈ Λ` and m` ∈ P (y`) for infinitely
many ` such that m` goes to infinity and f m` y` goes to x when ` goes to infinity. Observe
that W u(x) is tangent to F and f m`D is tangent to C F

θ0/2m`
. Let E i

R = W u(x)∩B(µi )∩R and

W s
(
E i

R

)
:= ⋃

x∈E i
R

W s(x). By the absolutely continuity of the stable foliation on R we have

with the notations of the previous subsection

Leb f m`D

(
W s

(
E i

R

)
∩ f m`BD,m`

(y`)
)
> BLebW u (x)

(
E i

R

)
for some constant B > 0 depending on R. Then by the distorsion property (7) we have for
some other constant B ′ > 0

LebD
(

f −m`W s(E i
R )∩BD,m`

(y`)
)

LebD
(
BD,m`

(y`)
) > B ′ Leb f m`D

(
W s

(
E i

R

)∩ f m`BD,m`
(y`)

)
Leb f m`D

(
f m`BD,m`

(y`)
)

> BB ′LebW u (x)(E i
R ).

But as yl ∈ Γ0 we have for ` large enough:

LebD
(
BD,m`

(y`)∩Γ)
LebD

(
BD,m`

(y`)
) > 1−BB ′LebW u (x)

(
E i

R

)
,

therefore
Γ∩ f −m`W s(E i

R ) 6= ;.

This concludes the proof as f −m`W s
(
E i

R

)
is contained in the basin of µi .

4 Finiteness

In this last section we prove Theorem D about the finiteness of SRB measures.
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4.1 Plaque family theorem and stable manifolds

We first recall some standard facts. The plaque family theorem from [14, Theorem 5.5]
states as follows:

Theorem 4.1. Assume that Λ is a compact invariant set with a dominated splitting TΛM =
E ⊕ F , then for every x ∈ Λ, there exists a C 1 embedding ψF

x : B(0,1) ⊂ F (x) → M with the
following properties:

• ψF
x (0) = x and the image of ψF

x is tangent to F(x) at x.

• the embeddings ψF
x depend continuously on the C 1 topology on x ∈Λ.

• there is δ< 1 such that f −1ψF
x (B(0,δ)) ⊂ψF

x (B(0,1)) for any x ∈Λ .

A similar conclusion holds for the bundle E.

The following lemma can be found in many papers, for instance [1, Section 8.2] or [?].

Lemma 4.2. Assume that Λ is a compact invariant set with a dominated splitting TΛM =
E ⊕F . For any γ ∈ (0,1) and any K > 0, there is δ= δ(γ,K ) such that for any x ∈Λ, if

n−1∏
i=0

‖D f −1|F ( f −i x)‖ ≤ Kλn
2 , ∀n ∈N

then ψF
x (B(0,δ)) is contained in the unstable manifold of x.

4.2 Bi-Pliss times

We assume that f is a C 1+α diffeomorphism. Given a compact invariant set Λ, denote
by MSRB(Λ) the set of ergodic SRB measures supported on Λ. When Λ admits a dominated
splitting TΛM = E ⊕F and µ is an ergodic measure µ supported onΛ, we let

mF (µ) =
∫

logm(D f |F )dµ, ME (µ) =
∫

log‖D f |E‖dµ.

By Birkhoff Ergodic theorem, we have for µ-almost every point x:

mF (µ) = lim
n→+∞

1

n

n∑
i=1

logm
(
D f |F ( f i x)

)
= lim

n→+∞− 1

n

n−1∑
i=0

log
∥∥∥(D f −1|F ( f −i x)

∥∥∥ ,

ME (µ) = lim
n→∞

1

n

n−1∑
i=0

log
∥∥∥D f |F ( f i x)

∥∥∥ .

Given K > 0 and γ ∈ (0,1), we define the following Pesin blocks

P F (γ,K ) :=
{

x ∈Λ :
n−1∏
i=0

∥∥∥D f −1|F ( f −i x)

∥∥∥≤ Kγn , ∀n ∈N
}

,
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and

P E (γ,K ) :=
{

x ∈Λ :
n−1∏
i=0

∥∥∥D f |E( f i x)

∥∥∥≤ Kγn , ∀n ∈N
}

.

To simplify the notations we just write P F (γ) and P E (γ) for P F (γ,1) and P E (γ,1) respec-
tively.

The mean ergodic inequality states that if φ is an integrable observable of an ergodic
measure preserving system (X ,T,B,ν) then∫

A
φdν≥ 0

with

A :=
{

x ∈ X , ∃n > 0 with
n−1∑
k=0

φ◦T k x > 0

}
.

In particular ∫
X \A

φdν≤
∫
φdν. (12)

Ifµ is an ergodic measure of f with mF (µ) >− logγ, we get M\A = P F (γ) withφ= log‖D f −1|F‖−
logγ and Equation (12) for the standard Borel σ-algebra Bor on M and the measure preserv-
ing system (M , f −1,Bor,µ) reads as follows:∫

P F (γ)
φdµ≤

∫
φdµ= mF (µ)− logγ< 0,

in particular
µ

(
P F (γ)

)> 0.

We consider an adapted norm for the dominated splitting (see [13]), in particular

∀x ∈Λ, ‖D f |E(x)‖‖D f −1|F ( f x)‖ ≤λ< 1. (13)

Lemma 4.3. Let γ ∈ (λ1/2,1) and let µ be an ergodic measure satisfying mF (µ) > − logγ and
M E (µ) < logγ. Then

µ
(
P F (γ)∩P E (γ)

)=µ(
P F (γ)

)=µ(
P E (γ)

)> 0.

Proof. Take x typical for µ so that we have with A = P F (γ), P E (γ) or P E (γ)∩P F (γ):

1

|n|]
{

k ∈ [0,n), f k x ∈ A
}

n→∞−−−−→µ(A).

To prove the lemma, it is enough to show
[

f k x ∈ P F (γ)
] ⇔ [

f k x ∈ P E (γ)
]

for any k ∈ Z. In
fact, by symmetry under taking the inverse of f , we only need to prove the implication ⇒. As
µ

(
P F (γ)

) > 0 (resp. µ
(
P E (γ)

) > 0), for µ-almost every point, there are infinitely many n > 0
and infinitely many n < 0 such that f n x ∈ P F (γ) (resp. ∈ P E (γ)). We argue by contradiction
by assuming ⇒ does not hold true. Let k be an integer with f k x ∈ P F (γ)\P E (γ). We consider
the smallest integer m larger than k with f m x ∈ P E (γ). Then there are there are integers n1

and n2 with k ≤ n1 < m ≤ n2 such that
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(i) f ni x ∈ P F (γ) for i = 1,2;

(ii) for any n ∈ (n1,n2), one has that f n x ∉ P F (γ).

By definition of m we have f n1 x ∈ P F (γ) \ P E (γ).

Claim.

∀n1 < j ≤ n2 −1,
j∏

i=n1+1

∥∥∥D f −1|F ( f i x)

∥∥∥> γ j−n1 .

Proof of the Claim. The Claim holds for j = n1 + 1. Otherwise, ‖D f −1|F ( f n1+1x)‖ ≤ γ. Since

f n1 (x) ∈ P F (γ), by concatenation, we get f n1+1x ∈ P F (γ). This contradicts the second item
(ii).

Now we assume that the formula holds for n1+1,n1+2, · · · , j < n2−1, i.e., for any n1+1 ≤
`≤ j , we have ∏̀

i=n1+1

∥∥∥D f −1|F ( f i x)

∥∥∥> γ`−n1 . (14)

We will check the claim for j +1. If it does not hold, then

j+1∏
i=n1+1

∥∥∥D f −1|F ( f i x)

∥∥∥≤ γ j+1−n1 . (15)

Thus, by (14) and (15) for any n1 +1 ≤ `≤ j , one has

j+1∏
i=`+1

∥∥∥D f −1|F ( f i x)

∥∥∥≤ γ j+1−`.

Since f n1 x ∈ P F (γ), by concatenation, we get f j+1x ∈ P F (γ). This contradicts the second
item (ii).

It follows from the above claim, the domination property (13) and γ2 > λ that for any
n1 < j ≤ n2 −1:

j−1∏
i=n1

∥∥∥D f |E( f i x)

∥∥∥≤λ j−n1

(
j∏

i=n1+1

∥∥∥D f −1|F ( f i x)

∥∥∥)−1

≤λ j−n1 /γ j−n1 ≤ γ j−n1 .

Then by concatenating up to m, we obtain the contradiction f n1 x ∈ P E (γ).

4.3 Proof of Theorem D

Recall that we have by the geometric property of SRB measures

Fact. For a hyperbolic ergodic SRB measure µ, for µ-almost every point x, LebW u (x)-almost
every point y is contained in the basin of µ.
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We are now in a position to prove Theorem D. Fix a > 0 and write a =− logγwithγ ∈ (0,1).
Let µ be an ergodic (hyperbolic) SRB measure with mF (µ) > − logγ and M E (µ) < logγ.

For µ-typical points x, the unstable bundle at x coincides with F (x). If x belongs moreover
to P F the size of the unstable manifold at x is bounded from below by some δ> 0 by Lemma
4.2 (we let W u

δ
(x) =ψF

x (B(0,δ)) in the following).
From Lemma 4.3, by taking B(µ) to be the basin of µ, we get

µ
(
P F (γ)∩P E (γ)

)=µ(
P F (γ)∩P E (γ)∩B(µ)

)> 0.

By the geometric property of SRB measures there is x = xµ ∈ P F (γ) such that

LebW u
δ

(x)
(
P E (γ)∩B(µ)

)> 0

Without loss of generality we may assume xµ is a Lebesgue density point of P E (γ)∩B(µ) for
LebW u

δ
(x).

Assume there are infinitely many distinct such SRB measures µ1, · · · ,µn , · · · and let xn =
xµn for any n. As the stable (resp. unstable) manifolds at points in P F (γ) (resp. in P E (γ)) have
lower bounded size, W s(y) is transverse to W u

δ
(xn) for y ∈W u

δ
(xm)∩P E (γ) whenever xn and

xm , n 6= m, are close enough. By absolutely continuity of the stable foliation, we get

LebW u
δ

(xn )
(
W s (

W u
δ (xm)∩P F (γ)∩P E (γ)∩B(µm)

))> 0.

From the above fact the basins B(µn) and B(µm) have non empty intersection, therefore
µn =µm . This contradicts our assumption and concludes the proof of Theorem D.

Appendix

Following Lemma 1 in [8], we prove the equality (3) stated in the introduction.

Lemma 4.4. Assume that Λ = ⋂
n∈N f nU is an attractor of a C 1+α diffeomorphism f with a

dominated splitting TΛM = E ⊕F . Then we have for all x ∈U ,

χF
min(x, f ) = sup

µ∈pw(x)

∫
λdim(F ) dµ.

Proof. For x ∈U and p ∈N∗ we let βp (x) := limsupn→+∞
1
n

∑n−1
i=0 logm

(
D f p |F ( f i x)

)
. The se-

quence
(
βp (x)

)
p is superadditive, in particular the limit χF

min(x, f ) = limp→+∞
βp (x)

p is well

defined. Let µ = limk µ
nk
x ∈ pω(x) for an increasing sequence of integers (nk )k . For all posi-

tive integers n and p we have∫
logm

(
D f p |F (y)

)
dµx

n(y) = 1

n

n−1∑
i=0

logm
(
D f p |F ( f i x)

)
.

Taking the limit over n = nk when k goes to infinity we get∫ logm
(
D f p |F (y)

)
p

dµ(y) ≤ βp (x)

p
. (16)
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It is well known that for µ a.e. y ,

logm
(
D f p |F (y)

)
p

p→+∞−−−−−→λdim(F )(y).

Therefore by taking the limit when p goes to infinity in (16) we have finally

sup
µ∈pw(x)

∫
λdim(F ) dµ≤χF

min(x, f ).

Let us now show the converse inequality. For any p there exist a subsequence (nk,p )k

such that

βp (x) = lim
k

1

nk,p

nk,p−1∑
i=0

logm
(
D f p |F ( f i x)

)
.

Then if µp ∈ pω(x) is a weak limit of
(
µ

nk,p
x

)
k

we have∫
logm

(
D f p |F (y)

)
dµp (y) =βp (x).

For any f -invariant probality measureµ and for any z ∈U , the sequences
(∫

logm
(
D f p |F (y)

)
dµ(y)

)
p

and (βp (z))p being both superadditive, the terms χ+(µ) and χF
min(z, f ) are respectively the

supremum of the sequences
( ∫

logm(D f p |F (y))dµ(y)
p

)
p

and
(
βp (z)

p

)
p

. We get therefore:

sup
µ∈pω(x)

∫
λdim(F ) dµ = sup

µ∈pω(x)
sup

p

∫
logm

(
D f p |F (y)

)
dµ(y)

p
.

By inverting the two suprema in the right-hand side term we conclude:

sup
µ∈pω(x)

∫
λdim(F ) dµ = sup

p
sup

µ∈pω(x)

∫
logm

(
D f p |F (y)

)
dµ(y)

p
,

≥ sup
p

∫
logm

(
D f p |F (y)

)
dµp (y)

p
,

≥ sup
p

βp (x)

p
=χF

min(x, f ).
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