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Abstract. For a topological system with positive topological entropy, we show that
the induced transformation on the set of probability measures endowed with the weak-∗
topology has infinite topological mean dimension. We also estimate the rate of divergence
of the entropy with respect to the Wasserstein distance when the scale goes to zero.

1. Introduction

Let (X,T ) be a topological dynamical system, i.e. X is a compact metrizable space and
T : X → X is a continuous map. Let M(X) be the space of Borel probability measures
on X endowed with the weak-∗ topology. Then the push-forward map T∗ : µ 7→ µ ◦ T−1

is a continuous map on M(X). The topological system (M(X), T∗) is called the induced
sytem of (X,T ) on probability measures.

W. Bauer and K. Sigmund [BS75] have investigated which dynamical properties of
(M(X), T∗) are inherited from (X,T ). In particular they obsversed that htop(T∗) is infinite
when htop(T ) is positive. Later B. Weiss and E. Glasner [GW95] showed that if (X,T )
has zero topogical entropy, then so does (M(X), T∗). Therefore we have the following
equivalences :

htop(T ) > 0⇔ htop(T∗) > 0⇔ htop(T∗) =∞.
M. Gromov [Gro99] has introduced a new topological invariant of dynamical systems

called (topological) mean dimension as a dynamical analogue of topological covering di-
mension. In some sense the mean dimension mdim(T ) estimates the number of parameters
that we need to describe the system (X,T ) per unity of time. A dynamical system of finite
entropy or finite dimension always has zero mean dimension. The mean dimension of the
shift on d-cubes ([0, 1]d)Z is equal to d ([LW00, Proposition 3.3]). Computing the mean
dimension is in general difficult and it is only known for few systems ([Tsu19, BS21]). In
the present paper we investigate the mean dimension of the induced system (M(X), T∗).
Our main result states as below :

Main Theorem. For any topological system (X,T ) with positive topological entropy, the
induced system (M(X), T∗) has infinite topological mean dimension. Therefore,

htop(T ) > 0⇔ mdim(T∗) > 0⇔ mdim(T∗) =∞.

Given a distance d on X, Lindenstrauss and Weiss [LW00] has introduced the associated
metric mean dimension mdim(X, d, T ) as the dynamical quantity corresponding to the
Minkowski dimension. They showed inter alia that the metric mean dimension is always
larger than or equal to the associated mean topological dimension. It is conjectured that
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the topological mean dimension is the infimum of the metric mean dimensions with respect
to distances inducing the topology (this conjecture is known to hold true in some cases,
see [LT19]). A dynamical system of finite entropy has zero metric mean dimension for any
metric compatible with the topology ([LW00]). Together with the Main Theorem, we have
the following corollary.

Corollary. Given a topological system (X,T ) we have the following equivalences for any
metric D on M(X) compatible with the weak-∗ topology:

htop(T ) > 0⇔ mdim(M(X), D, T∗) > 0⇔ mdim(M(X), D, T∗) =∞.

For an integer a ≥ 2 we let Ta be the ×a-map on the circle. Kloeckner [Klo13] proved the
following lower bound on the metric mean dimension of Ta for the pth-Wasserstein metric:

mdim(M(X),Wp, (Ta)∗) ≥ p(a− 1).

In fact, the metric mean dimension of the n-power of a system is always larger than or
equal to n times the metric mean dimension of the system (see Inequality (2·5)). But the
n-power of (Ta)∗ is just (Tan)∗, therefore without referring to our new results one can show
directly from Kloeckner’s theorem that the metric mean dimension of the induced map
(Ta)∗ with respect to the pth-Wasserstein metric is in fact infinite:

mdim(M(X),Wp, (Ta)∗) ≥
1

n
·mdim(M(X),Wp, (Ta)

n
∗ ),

≥ 1

n
·mdim(M(X),Wp, (Tan)∗),

≥ p · a
n − 1

n

n−→∞.

Therefore, Kloeckner’s theorem can be regarded as a special case of our Corollary.
For a topological system (X,T ) with positive entropy, the Main Theorem implies the

mean dimension 1 of T∗ with the scale ε, denoted by mdimW1(T∗, ε), goes to infinity as ε
tends to zero. The rate of divergence of mdimW1(T∗, ε) may be precised as follows:

Theorem 1. Suppose (X,T ) is of positive entropy and Lipschitz. Then there exist C, α > 0
such that we have

∀0 < ε < 1, mdimW1(T∗, ε) ≥ Cε−α.

In general, we can use the modulus of continuity of T to estimate the rate of divergence
of mdim(M(X), T∗,W1, ε), but for simplicity we only state the result for Lipshitz systems
(X,T ).

The Corollary also implies that the mean dimension of T∗ with respect to the Wasserstein
metric W1 associated to some given compatible metric d on X is infinite, i.e.

hW1(T∗, ε)

log 1
ε

ε→0−−→ +∞.

1See the definition in Section 2.3.
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We also investigate the rate of divergence of hW1(T∗, ε) as ε tends to zero for Lipschitz
systems.

Theorem 2. Suppose (X,T ) is of positive entropy and Lipschitz. Then there exist C, α > 0
such that we have

∀0 < ε < 1, hW1(T∗, ε) ≥ Cε−α.

Under the same approach, our results (Main Theorem, Corollary, Theorem 1 and The-
orem 2) can be generalized to the action of congruent monotilable amenable groups, like
Zd, d ≥ 2. It seems that we could not apply directly the same method to the action of
amenable groups which is not congruent monotilable. We thus wonder whether our results
still hold for general amenable actions.

Organization of the paper. In the next section we recall some basic facts on the mean
dimension. In the third section we give a first direct proof of the Main theorem for full
shifts on {0, 1}Z. This proof, which is independent from the proof in the general case,
strongly uses the product structure on {0, 1}Z. The mean dimension is shown to be in-
finite by embedding the shift on cubes of arbitrarily large dimension in the induced sys-
tem

(
M({0, 1}Z), σ∗

)
. Then we prove the main theorem in the general case. We work

with the metric definition (2·2) of the topological mean dimension with respect to the
Kantorovic-Rubinstein metric. We use the theory of independence developed by Weiss-
Glasner [GW95], Kerr-Li [KL07] and others, which gives a weak product structure in any
topological system with positive entropy. By embedding generalized cubes of dimension
(k− 1)n in the kn-simplex we conclude the proof with a Lebesgue’s like theorem for these
cubes. In Section 6 we establish the rates of convergence for the mean dimension and
entropy with respect to the Wasserstein distance given in Theorem 1 and Theorem 2. In
the last section we study the mean dimension of the action induced on the hyperspace of
compact subsets of X.

2. Backgrounds

In the whole paper we let (X,T ) for a topological dynamical system, i.e. X is compact
metrizable and T : X → X a continuous map. We denote by d any metric compatible with
the topology on X.

2.1. Dimension. We first recall some standard concepts related to the dimension of the
phase space X.

2.1.1. Order of a cover and Lebesgue’s Lemma. We define the order ord(A) of a finite open
cover A of X as follows

ord(A) := sup
x∈X

∑
A∈A

1A(x)− 1,

H. Lebesgue proved in [Leb11] that cubes of different dimensions are not homeomorphic.
We state below the key lemma of his approach.
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Lemma 3. [Leb11] Let α be a finite open cover of the unit cube [0, 1]n. Suppose that there
is no element of α meeting two opposite faces of [0, 1]n. Then we have

ord(α) ≥ n.

Let ∆k be the standard k-simplex, k ∈ N∗, i.e.

∆k :=

{
(xi)i ∈ [0, 1]k,

∑
i

xi = 1

}
.

To prove the Main Theorem, we will generalize Lebesgue’s Lemma to n-direct products of
the simplex ∆k (see Lemma 9) in place of [0, 1]n.

2.1.2. Topological dimension. For two finite open covers A and B of X, we say that the
cover B is finer than the cover A, and write B � A, if for every element of B, one can find
an element of A which contains it. For a finite open cover A of X, we define the quantity

D(A) := min
B�A

ord(B).

For finite open covers A and B, we set the joint A ∨ B := {U ∩ V : U ∈ A, V ∈ B}. It is
easy to check that D(A ∨ B) ≤ D(A) +D(B). Clearly, if B � A then D(B) ≥ D(A).

The (topological) dimension of X is defined by

dim(X) := sup
A
D(A),

where A runs over all finite open covers of X. For a non-empty compact X, the stable
topological dimension of X is given by

stabdim(X) := lim
n→∞

dim(Xn)

n
= inf

n→∞

dim(Xn)

n
,

where Xn denotes the n-direct product of X. The limit above exists by sub-additivity
of the sequence {dim(Xn)}n≥1. Moreover, if X is finite dimensional, then we have either
stabdim(X) = dim(X) and dim(X2) = 2 dim(X) (the space X is then said of basic type )
or stabdim(X) = dim(X)− 1 and dim(X2) = 2 dim(X)− 1 (and X is said of exceptional
type)). M. Tsukamoto proved in [Tsu19] that the full shift on XN has topological mean
dimension equal to stabdim(X) whenever X is finite dimensional.

2.1.3. Metric ε-dimension and width. Recall d denotes a compatible distance on X. For
a set Z and ε > 0, a map f : X → Z is called (d, ε)-injective if diam(f−1(z)) < ε for all
z ∈ Z. The metric ε-dimension dimε(X, d) is defined by

dimε(X, d) = inf
Y

dim(Y ),

where Y runs over all compact metrizable spaces for which there exists a (d, ε)-injective
continuous map f : X → Y .

The metric ε-dimension of X is bounded from above by the topological dimension of X
and is going non-increasingly to the topological dimension when ε goes to zero.
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A variant of the metric ε-dimension introduced by Gromov [Gro99] is the ε-width,
Widimε(X, d) which is the smallest integer n such that there exists an ε-injective con-
tinuous map f : X → P from X into some n-dimensional polyhedron P . We always
have

dimε(X, d) ≤Widimε(X, d) ≤ 2 dimε(X, d) + 1.

Gromov showed that the unit ball B of a n-dimensional Banach (E, ‖ · ‖) space satisfies

∀1 > ε > 0, Widimε(B, ‖ · ‖) = n.

Motivated by a question raised by Gromov [Gro99, p.334], Gournay [Gou11] and Tsukamoto
[Tsu08] obtained some estimates for Widimε(Bp, `q) with Bp being the unit ball in (Rn, `p).
Gromov also wondered about the width of the simplex ∆n.

2.2. Entropy. To fix the notations we recall here Bowen’s definition of topological entropy.
For any positive integer n we consider the n-dynamical distance dn as follows,

∀x, y ∈ X, dn(x, y) = max
0≤i≤n−1

d(T ix, T iy).

Let K ⊂ X and ε > 0. A subset E of X is said to be (n, ε)-separated if we have
dn(x, y) > ε for any x 6= y ∈ E. Denote by sn(d, T,K, ε) the largest cardinality of any
(n, ε)-separated subset of K. Define

hd(K,T, ε) = lim sup
n→∞

1

n
log sn(d, T,K, ε).

We sometimes write hd(T, ε) when K = X. Observe that for all positive integer n and all
ε > 0 we have the following estimate on the entropy of the n-power T n:

hd(T
n, ε) ≤ n · hd(T, ε).(2·1)

The topological entropy is the limit of hd(T, ε) when ε goes to zero. This limit does not
depend on the choice of the metric d (this is no more the case of the topological and metric
mean dimensions).

The entropy is homogeneous, i.e. htop(T
n) = n · htop(T ) for all n ∈ N and htop(X,T ) ≥

htop(Y, T ) for any invariant closed subset Y of X. Also the entropy of the full shift over
a finite alphabet A is equal to log ]A. A topological system (X,T ) is said to have a
horseshoe when the full shift over {0, 1}N embeds in some power (X,Tm). It follows from
the above properties, that such systems have positive topological entropy. Many systems
with positive topological entropy have a horseshoe, e.g.:

• coded subshifts,
• continuous interval and circle maps with positive entropy (by Misiurewicz horseshoe

theorem [Mis79]),
• C1+ surface diffeomorphisms (by Katok’s horseshoe theorem [Kat80]),
• ...

But there are also systems with positive topological entropy without horseshoes, even
uniquely ergodic minimal subshifts.
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Inspired by the works on emergence introduced by P. Berger, Y. Ji, E. Chen and X. Zhou
[YJ] defined a topological order which estimates the superexponential growth of orbits at
arbitrarily small scaled. Let Wdn be the 1-Wasserstein metric associated to dn. They define
the entropy order E(T ) of T by

E(T ) := lim
ε→0

lim sup
n

log log sn(Wdn , T∗,M(X), ε)

n
.

They showed that the entropy order is always equal to the topological entropy by Jewett-
Krieger theorem.

2.3. Mean dimension. Let (X,T ) be a topological dynamical system, i.e. X is a compact
metrizable space and T : X 	 is a continuous map. The mean dimension of (X,T ) is
defined by

mdim(X,T ) = sup
α

lim
n→∞

D(
∨n−1
i=0 T

−iα)

n
,

where α runs over all finite open covers of X. The existence of the limit follows from
the sub-additivity of the sequence

(
D(
∨n−1
i=0 T

−iα)
)
n≥1

. We put also mdim(X,T, α) =

limn→∞
D(

∨n−1
i=0 T

−iα)

n
. When there is no ambiguity we write also mdim(T ) for mdim(X,T ).

We mention some basic properties of mean dimension. We refer to the book [Coo05] for
the proofs and further properties.

• For a metric d on X compatible with the topology, we have

(2·2) mdim(X,T ) = lim
ε→0

mdimd(T, ε),

where we let mdimd(T, ε) = limn→∞
dimε(X,dn)

n
. Observe the limit in ε in the defini-

tion (2·2) of mdim(X,T ) is also a supremum over ε.

• If (Y, T ) is a subsystem of (X,T ), i.e. Y is a closed T -invariant subset of X, then

(2·3) mdim(Y, T ) ≤ mdim(X,T ).

• For n ∈ N,

(2·4) mdim(X,T n) = n ·mdim(X,T ).

• For dynamical systems (Xi, Ti), 1 ≤ i ≤ n, we have

mdim(X1 ×X2 × · · · ×Xn, T1 × T2 × · · · × Tn) ≤
n∑
i=1

mdim(Xi, Ti).

The upper metric mean dimension of the system (X, d, T ) is defined by

mdim(X, d, T ) = lim sup
ε→0

hd(T, ε)

log 1
ε

.
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Similarly, the lower metric mean dimension is defined by

mdim(X, d, T ) = lim inf
ε→0

hd(T, ε)

log 1
ε

.

If the upper and lower metric mean dimensions coincide, then we call their common value
the metric mean dimension of (X, d, T ) and denote it by mdim(X, d, T ). Unlike the topolog-
ical entropy, the metric mean dimension depends on the metric d. An important property
of metric mean dimension is

mdim(X,T ) ≤ mdim(X, d, T ),

for any metric d [LW00].
It follows from the definitions and Inequality (2·1) that:

∀n ∈ N, mdim(X, d, T n) ≤ n ·mdim(X, d, T ).(2·5)

2.4. Embedding in induced system. Let (X,T ) be a dynamical system. For any n ∈
N∗ we denote by (X(n), T (n)) the n-direct product of (X,T ). These products embed in
(M(X), T∗). Indeed we may find n positive integers k1 � · · · � kn such that for any two
subfamilies I 6= J of {1, · · · , n} we have

∑
i∈I ki 6=

∑
j∈J kj. Then we define a dynamical

embedding π : (X(n), T (n))→ (M(X), T∗) as follows

∀(x1, · · · , xn) ∈ X(n), π(x1, · · · , xn) =

∑
i=1,··· ,n kiδxi∑
i=1,··· ,n ki

,

where δx is the Dirac measure at x.

The topological entropy of T (n) is n · htop(T ). The topological mean dimension satisfies
the same property as proved recently in [JQ21] :

∀n ∈ N, mdim(X(n), T (n)) = n ·mdim(X,T ).

Therefore as the topological entropy (resp. topological mean dimension) is a topological
invariant which is smaller for subsystems, we get htop(T∗) ≥ n · htop(T ) (resp. mdim(T∗) ≥
n · mdim(T )) for all n. In particular if T has positive topological entropy (resp. mean
dimension) then T∗ has infinite topological entropy (resp. mean dimension). For the topo-
logical entropy this property was first noticed in [Sig78].

3. A first direct proof for systems with a horseshoe

We first prove the Main Theorem for systems with a horseshoe. By (2·4) and (2·3) it
is enough to show it for a full shift on a finite alphabet A. Let σ be the shift on AN, i.e.
(xn)n∈N 7→ (xn+1)n∈N. For a finite word a = (a0, · · · , an−1) ∈ An with some integer n, we
denote by [a] the cylinder with preword a, i.e.

[a] := {x ∈ AN : xi = ai,∀0 ≤ i ≤ n− 1}.

Theorem 4. For ]A ≥ 2, we have mdim(M(AN), σ∗) = +∞.
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Using the product structure of An, we will embed the full shift over a simplex of arbi-
trarily large dimension in (M(AN), σ∗).

Proof. Fix m ∈ N∗. Let Am be the set of words of length m. Recall that ∆]Am denotes
the ]Am-simplex, which can be seen as the set of probability measures on Am:

∆]Am :=

{
(xi)i∈Am ∈ [0, 1]A

m

:
∑
i∈Am

xi = 1

}
.

In this case we have stabdim(∆]Am) = dim(∆]Am) = ]Am − 1. For any a ∈ ∆]Am we let
µa be the probability measure on ]Am with probability vector a = (aj)j∈Am , i.e.

µa({j}) = aj for all j ∈ Am.
We identify (Am)N with AN by the natural homeomorphism π : (Am)N → AN, which
associates to (xij)i∈{0,··· ,m−1},j∈N the sequence (yk)k∈N defined by yjm+i = xij for any j ∈ N
and i ∈ {0, · · · ,m− 1}. Then define fm : ∆N

]Am →M(AN) as follows:

∀a = (an)n∈N ∈ ∆N
]Am , fm(a) = π∗(µa1 × µa2 × · · · ),

where µa1×µa2×· · · denotes the direct product measure on (Am)N. Clearly fm is injective,
continuous and for all a = (an)n∈N ∈ (Am)N we have with σ, σ′ and σ′′ being respectively
the shifts on AN, (Am)N and ∆N

]Am :

fm ◦ σ′′(a) = π∗(µa2 × µa3 × · · · ),
= π∗ ◦ σ′∗(µa1 × µa2 × · · · ),
= σm∗ ◦ π∗(µa1 × µa2 × · · · ),
= σm∗ ◦ fm(a).

In other terms, fm : (∆N
]Am , σ

′′) → (M(AN), σm∗ ) is a dynamical embedding. In particular
we get for all positive integers m:

mdim(σ∗) =
mdim(σm∗ )

m
,

≥ mdim(σ′′)

m
,

≥ stabdim(∆]Am)

m
.

≥ ]Am − 1

m

m→∞−−−→ +∞.

�

From Theorem 4, the conclusion of the Main Theorem holds for any topological system
(X,T ) with a horseshoe. For a positive integer a we recall Ta denotes the ×a-map on the
circle. For a > 1 we have htop(Ta) = log a > 0 and Ta has then a horseshoe. In particular
the topological mean dimension of Ta is infinite. Therefore we recover Kloeckner’s result:

mdim(M(X),W1, (Ta)∗) ≥ mdim(M(X), (Ta)∗) = +∞.
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4. Tools for the proof in the general case

We need some preparation before proving the Main Theorem for a general topological
system with positive entropy.

4.1. Wasserstein distance. To estimate the topological mean dimension we use the met-
ric definition (2·2) of the topological mean dimension for the Wasserstein distance W1 on
M(X) (which is compatible with the weak-∗ topology). The pth-Wasserstein distance
between two probability measures µ and ν in M(X) is defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
d(x, y)p dγ(x, y)

)1/p

,

where Γ(µ, ν) denotes the collection of all measures on X × X with marginals µ and ν
on the first and second factors respectively. In the present paper we only make use of
W = W1. The Kantorovich-Rubinstein dual representation of W is given by

∀µ, ν ∈M(X), W (µ, ν) = sup
f

∫
f (dµ− dν),

where the supremum holds over all 1-Lipschitz functions f : X → R.

For a metric space (Y, ρ) we let diamρ(Y ) be the diameter of Y with respect to the
distance ρ. From the Kantorovich-Rubinstein dual representation of W we get easily

diamW (M(X)) ≤ diamd(X).

We also recall below a useful property of W , which follows from the Lipschitz property
of the distance.

Lemma 5. Let µ and ν be two measures in M(X) respectively supported on two compact
sets S and S ′. Then

W (µ, ν) ≥ µ(S \ S ′)d(S \ S ′, S ′).

Proof. Write µ as µ = λµ′ + (1 − λ)µ′′ with µ′, µ′′ ∈ M(X) and λ ∈ [0, 1] satisfying
µ′(S \ S ′) = 1 and µ′′(S ′) = 1. Note that we have λ = µ(S \ S ′). Then, as d(·, S ′) is
1-Lipschitz, we get:

W (µ, ν) ≥
∫
d(·, S ′) (dµ− dν),

≥ λ

∫
d(·, S ′) dµ′, because ν and µ′′ are supported on S ′,

≥ λd(S \ S ′, S ′) = µ(S \ S ′)d(S \ S ′, S ′).

�
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4.2. Independence set. For a subset E of N we let En = E ∩ [1, n] for all n ∈ N. Then
we let d(E) be the lower asymptotic density of E given by

d(E) = lim inf
n

]En
n
.

B. Weiss and E. Glasner [GW95], then D. Kerr and J. Li showed positive entropy implies
some weak product structure of dynamical system.

Lemma 6 ([KL07] Proposition 3.9 (2)). Let (X,T ) be a topological system with positive
topological entropy. There exist non empty open subsets U0, U1 of X with U0 ∩ U1 = ∅ and
I ⊂ N with d(I) > 0 such that for any finite subset J of I and for any ζ : J → {0, 1} we
have ⋂

j∈J

T−jUζ(j) 6= ∅.

Conversely the existence of such a pair U0 and U1 clearly implies that (X,T ) has positive
entropy. The set I is called an independence set and (U0, U1) is an IE-pair. Existence of
IE-pairs follows from a combinatorial result due to N. Sauer [Sau72] and S. Shelah [She72].
This result was also a key point in the ”non-ergodic” proof of [htop(T ) = 0]⇒ [htop(T∗) = 0]
by B. Weiss and E. Glasner [GW95].

Given (X,T ) with htop(T ) > 0 we fix from now the IE-pair (U0, U1) and the independence
set I as in Lemma 6. For all m ∈ N we let

qm =

⌊
m · d(I)

2

⌋
where bxc is the largest integer n ≤ x and we consider

Im = {k ∈ N, ][km, (k + 1)m[∩I > qm} .
As in the proof of Theorem 4 we will bound from below the mean dimension of Tm∗ to

show the Main Theorem and then take the limit in m. We need the following lower bound
on the lower asymptotic density of Im.

Lemma 7. For any m ≥ 1, we have

d(Im) ≥ d(I)

2
.

Proof. For n ∈ N, we have

]Imn ≤ m]Imn + qm(n− ]Imn ),

therefore by taking the limit in n we get:

d(I) ≤ m− qm
m

d(Im) +
qm
m
,

≤ d(Im) +
d(I)

2
.

�
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4.3. Simplex and generalized cube. Recall that ∆k is the standard k-simplex of di-
mension k − 1. A `-face of the simplex ∆k is

{(xi)i∈I ∈ [0, 1]I :
∑
i∈I

xi = 1}

for some I ⊂ {1, 2, . . . , k} with ]I = `. Cleqrly, any `-face is affinely homeomorphic to ∆`.
The opposite face F̄ of a face F = {(xi)i∈I ∈ [0, 1]I :

∑
i∈I xi = 1} is

{(xi)i∈Ic ∈ [0, 1]I
c

:
∑
i∈Ic

xi = 1}

where Ic = {1, 2, . . . , k} \ I. The opposite face of a (k − 1)-face F is just the vertex of the
simplex which does not belong to F . Notice also that for m (≤ k) distinct (k − 1)-faces
(Fj)1≤j≤m, the intersection ∩1≤j≤mF

j is a (k −m+ 1)-face.
We denote by v(∆k) the set of vertices of ∆k and by ∗ the center of ∆k, i.e. the point

with coordinates (1/k, · · · , 1/k). Note that ∆1 is a compact interval. The polyhedron
given by the n-product ∆n

k will be called a generalized cube. Let F be a face of ∆k. For
i ∈ {1, · · · , n} we let Fi be the face of ∆n

k given by

Fi = ∆k × · · ·∆k︸ ︷︷ ︸
i−1

×F ×∆k × · · ·∆k︸ ︷︷ ︸
n−i

.

The boundary of ∆n
k , denoted by ∂∆n

k , is the union of Fi for all (k−1)-faces F and 1 ≤ i ≤ n.
The interior of ∆n

k is ∆n
k \ ∂∆n

k .
We introduce an adapted notion of separation of faces for generalized cubes.

Defintion 8. A cover α of ∆n
k is said to be separating if for any i ∈ {1, · · · , n} and for

any subfamily (Uj)j∈J of α with (k − 1)-faces (F j)j∈J of ∆k satisfying F j
i ∩ Uj 6= ∅ for all

j ∈ J , the intersection set
⋂
j∈J Uj and the opposite face

(
∩j∈JF j

)
i

are disjoint.

4.4. Generalized Lebesgue’s lemma. We need a Lebesgue’s like Lemma for generalized
cubes.

Lemma 9 (Generalized Lebesgue’s lemma). Any separating open cover α of ∆n
k has order

larger than or equal to nk.

Proof. We argue by contradiction by considering a separating open cover α of ∆n
k with order

less than nk. Let (fU)U∈α be a partition of unity associated to α, i.e. fU : ∆n
k → [0, 1]

is a continuous function supported on U for any U ∈ α and
∑

U∈α fU = 1. We define a
function φα = (φα1 , · · · , φαn) : α→ ∆n

k as follows: for any U ∈ α and any i ∈ {1, · · · , n} we
let

φαi (U) :=


∗, if U ∩ Fi = ∅ for any (k − 1)-face F ,

{0} × · · · {0}︸ ︷︷ ︸
i−1

×F × {0} × · · · {0}︸ ︷︷ ︸
n−i

, for some (k − 1)-face F with Fi ∩ U 6= ∅.
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Note that φα is not uniquely defined in this way as U may intersect different faces of Fi,
but it does not affect the proof. We define a function g : ∆n

k 	 by

∀x ∈ ∆n
k , g(x) =

∑
U∈α

φα(U)fU(x).

Since the order of α is less than nk the function g takes values in a finite union of
(nk − 1)-dimensional convex subsets of ∆n

k . Therefore there is a point x in the interior of
∆n
k which does not lie in the image of g. Let r : ∆n

k \ {x} → ∂∆n
k be a retraction map on

the boundary ∂∆n
k of ∆n

k .
Notice that if g(x) does not lie in the interior of ∆n

k then there is i ∈ {1, · · · , n} and a
family F of (k − 1)-faces such that :

• for each element U of α containing x there is a (k−1)-faces F ∈ F with U ∩Fi 6= ∅,
• g(x) belongs to

(
∩F∈FF

)
i
.

As the cover α is assumed to be separating, we have in particular g(x) 6= x for any x ∈ ∂∆n
k .

Therefore the restriction of g to the boundary of ∆n
k has no fixed point. Finally the map

r ◦ g : ∆n
k :	 has also no fixed point. This contradicts Brower’s fixed point theorem. �

4.5. A multi-affine embedding of the generalized cube ∆n
k in the simplex ∆kn. To

simplify the notations we let JnK := {1, · · · , n} for any positive integer n. The generalized
cube ∆n

k may be embedded in the simplex ∆kn by the following map:

Θ : ∆n
k → ∆kn ,

(tm)m∈JnK 7→
∑

i=(im)m∈JnK

tiei,(4·1)

where ei is a standard basis of Rkn and ti =
∏

m∈JnK tm,im with tm = (tm,i)i∈JkK ∈ ∆k for

any m ∈ JkK.

Figure 1. The hyperbolic paraboloid inside the simplex ∆4.
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Clearly Θ is continuous and injective. It is not hard to check that the embedding Θ is
not affine, but multi-affine, i.e. it is affine separately in each variable tm. In particular
the image S of ∆n

k under Θ is not convex, but its faces may still be joined by segment
lines inside S. For example if one takes n = k = 2, then the image of Θ is a hyperbolic
paraboloid, which is a doubly ruled two-dimension surface in ∆4 (see Figure 1).

5. Proof of Main Theorem

In this section, we prove our main theorem. To this end, we shall prove the mean
dimension of the induced map Tm∗ grows exponentially fast in m, whenever (X,T ) has
positive topological entropy. Recall that W denotes the 1-Wasserstein distance. We let
Wm
n be the n-dynamical 1-Wasserstein distance for Tm∗ , i.e.

∀µ, ν ∈M(X), Wm
n (µ, ν) = max

0≤k<n
W (T km∗ µ, T km∗ ν).

Remark that W 1
n may differ from the Wasserstein distance Wdn associated to the dynamical

distance dn. In general we only have W 1
n ≤ Wdn (see Proposition 2.1 in [YJ]).

Suppose (X,T ) is a dynamical system with positive topological entropy. Let (U0, U1) be
the IE-pair and I be the independence set of (X,T ) as in Lemma 6. We state below the
main proposition towards the Main Theorem.

Proposition 10. For any m ≥ 1 there is some εm > 0 such that

(5·1) dimεm(M(X),Wm
n ) ≥ 2qm]Imn .

We first conclude the proof of the Main Theorem assuming Proposition 10.

Proof of the Main Theorem. By taking n → +∞ in (5·1) we get the following inequality
according to Lemma 7:

lim
n→+∞

dimεm(M(X),Wm
n )

n
≥ 2qm−1 · d(I).

Then by (2·2) we have

mdim(M(X), Tm∗ ) ≥ lim
n→∞

dimεm(M(X),Wm
n )

n
,

≥ 2qm−1 · d(I).



14 DAVID BURGUET AND RUXI SHI

Finally by using the formula (2·4) of the mean dimension of powers, we conclude that

(recall that qm is equal to bm·d(I)
2
c):

mdim(M(X), T∗) =
mdim(M(X), Tm∗ )

m
,

≥ mdimW (Tm∗ , εm)

m
,

≥ lim
n→∞

dimεm(M(X),Wm
n )

n
,

≥ 2qm−1

m
· d(I)

m→+∞−−−−→ +∞.

This completes the proof. �

The end of this section is devoted to the proof of Proposition 10. Fix m ≥ 1. For any
k ∈ Im we let Ek be the qm first integers in [km, (k + 1)m[∩I and we consider a bijection

ψk : J2qmK→ {0, 1}Ek .
Let n ≥ 1. Since I is the independent set of (X,T ), we can pick, for each sequence
i = (ik)k∈Imn ∈ J2qmKImn , a point xi with

xi ∈
⋂
k∈Imn ,
`∈Ek

T−`Uak` where ψk(ik) = (ak` )`∈Ek .

Let us denote by δx the Dirac measure at x ∈ X. Let Kn inside M(X) be the (2qm)]I
m
n -

simplex given by the convex hull of all δxi for i ∈ J2qmKImn . To prove Proposition 5·1 it is
enough to show that

dimεm(Kn, T
m
∗ ) ≥ 2qm]Imn .

We consider the affine homeomorphism

Ψ : ∆2qm]I
m
n → Kn,

(ti)i∈J2qmKImn 7→
∑
i

tiδxi .
(5·2)

We let Ξ = Ψ ◦ Θ with Θ being the multi-affine embedding of ∆
]Imn
2qm in ∆2qm]I

m
n defined in

Subsection 4.5. Notice that Ξ is also a multi-affine embedding. We denote the image of Ξ
by Ln. For E ⊂ M(X), we put SE :=

⋃
µ∈E supp(µ). Note that SKn consists of finitely

many points xi for i ∈ J2qmKImn . We have the following decomposition of the measure in
Ln.

Lemma 11. Let 1 ≤ ` ≤ k− 1. Let F be a `-face of ∆2qm and F be its opposite (2qm − `)-
face. Let i ∈ Imn . For any µ ∈ Ln, there is λ ∈ [0, 1], µ′ ∈ Ξ(Fi) and µ′′ ∈ Ξ(F i)
with

µ = λµ′ + (1− λ)µ′′,

where µ(SΞ(Fi)) = λ and µ(SΞ(F i)
) = 1− λ.
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Proof. Let F be a `-face of ∆2qm and i ∈ Imn . Suppose µ = Ξ(t) for some t ∈ ∆
Imn
2qm . Since

the simplex ∆2qm is the convex hull of F and its opposite (2qm − `)-face F , the generalized

cube ∆
Imn
2qm is the convex hull of Fi and F i. Then we write t = λt′ + (1 − λ)t′′ for some

λ ∈ [0, 1], t′ ∈ Fi and t′′ ∈ F i. As Ξ is affine in the ith coordinate, we conclude that

µ = λΞ(t′) + (1− λ)Ξ(t′′).

�

In the following we identify Ln and the generalized cube ∆
Imn
2qm via the embedding Ξ. In

particular we will talk about the faces of Ln as the images by Ξ of the faces of ∆
Imn
2qm . For

m ∈ N, by continuity of T , there is γm > 0 such that

[d(x, y) < γm]⇒ [d(T kx, T ky) < d(U0, U1),∀k = 0, · · · ,m− 1].

Lemma 12. Let µ ∈ Ln and i ∈ Imn . For any face F of ∆2qm we have

(1)

Wm
n (µ, Fi) ≥ µ(SF i)γm,

in particular,

Wm
n

(
Fi, F i

)
≥ γm.

(2)

Wm
n (µ, Fi) ≤ diamd(X)µ(SF i).

Proof. We write µ as

µ = βµ′ + (1− β)µ′′

with µ′′ ∈ Fi, µ′ ∈ F i and β = µ
(
SF i
)

as in Lemma 11.

(1) If xi and xi′ belong respectively to SF i and SFi , then there exists 0 ≤ k < m with

T im+kxi ∈ Uj and T im+kxi′ ∈ Uj′ , j 6= j′ ∈ {0, 1}. By definition of γm we have

d(T imxi, T
imxi′) ≥ γm.

It follows that

d(T imSF i , T
imSFi) ≥ γm.

Consequently by Lemma 5 we have for all ν ∈ Fi :

Wm
n (µ, ν) ≥ W (T imµ, T imν),

≥ βd(T imSF i , T
imSFi),

≥ βγm.

Therefore Wm
n (µ, Fi) ≥ µ(SF i)γm. Finally, notice that if µ ∈ F i, then β = 1. This

implies that Wm
n

(
Fi, F i

)
≥ γm.
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(2) Since µ′′ ∈ Fi, we have

Wm
n (µ, Fi) ≤ Wm

n (µ, µ′′),

≤ β ·Wm
n (µ′, µ′′),

≤ β · diamd(X).

�

Now we let

(5·3) εm =
γ2
m

diamd(X)2qm+1
.

Lemma 13. Let i ∈ Imn . Then for any µ ∈ Ln and any family F of (2qm − 1)-faces of
∆2qm with Wm

n (µ, Fi) < εm for all F ∈ F , we have

Wm
n (µ,

⋂
F∈F

Fi) ≤
γm
2
.

Proof. By Lemma 12 (1), we have

∀F ∈ F , µ(SF i) ≤
εm
γm

.

Then according to Lemma 12 (2), we have

Wm
n (µ,

⋂
F∈F

Fi) ≤ diamd(X)µ
(
S(

⋂
F∈F F)

i

)
,

≤ diamd(X)
∑
F∈F

µ(SF i), as S(
⋂
F∈F F)

i

⊂
⋃
F∈F

SF i ,

≤ diamd(X)
εm
γm

]F ,

≤ diamd(X)
εm
γm

2qm =
γm
2
.

�

Lemma 14. Any cover α of Ln with Wm
n -diameter less than εm is separating.

Proof. Fix i ∈ Imn . According to Lemma 13, if (Uj)j∈J is a subfamily of α with
⋂
j∈J Uj 6= ∅

and F j
i ∩Uj 6= ∅, j ∈ J , for some (2qm−1)-faces F j of ∆2qm , then

⋂
j∈J Uj lies in the γm/2-

neighborhood of
⋂
j∈J F

j
i . Noting that

⋂
j F

j is the opposite face of
⋂
j F

j we have in the

other hand by Lemma 12 (1):

Wm
n

⋂
j

F j
i ,

(⋂
j

F j

)
i

 ≥ γm.

Therefore
⋂
j Uj and

(⋂
j F

j
)
i

are disjoint.

�
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We can now conclude the proof of Proposition 10.

Proof. Let m,n ≥ 1. Let εm be defined as (5·3). Suppose f : Ln → Z is a (Wm
n , εm)-

injective map with Z a compact metrizable space of finite dimension. Then there is an
open cover α of Ln with diameter less than εm and with order less than or equal to dim(Z).
According to Lemma 14, the cover α of Ln is separating. From Lemma 9 the order of α is
larger than 2qm]Imn . Then we conclude that

dimεm(M(X),Wm
n ) ≥ dimεm(Ln,W

m
n ),

≥ 2qm]Imn .

This completes the proof of Proposition 10, therefore of the Main Theorem. �

Proof of Theorem 1. Suppose T is K-Lipschitz, so that we can take

γm = K−m · d(U0, U1)

2
.

Then we have
εm = c1e

−mc2 ,

where c1 = d(U0,U1)2

4diamd(X)
and c2 = 2 logK + d(I) log 2

2
. It follows that

mdimW (T∗, εm) ≥ 1

m
mdimW (Tm∗ , εm),

≥ lim
n→+∞

dimεm(M(X),Wm
n )

n
,

≥ lim
n

2qm]Imn
n

,

≥ 2m
d(I)
2
−2d(I).

Since εm+1/εm is bounded, we can find C > 0 such that with α = d(I) log 2
2c2

it holds that :

∀0 < ε < 1, mdimW (T∗, ε) ≥ Cε−α.

�

6. Rate of divergence of hW (T∗, ε)

In this section, we discuss about the precise rate of divergence of hW (T∗, ε). We first
give a rough upper bound on the ratio hW (T∗, ε). For ε > 0 and a metric space (Z, ρ), let
s(Z, ρ, ε) be the smallest cardinality of a ε-covering set in Z with respect to ρ. The (upper)

Minkowski dimension dimd(Z) of (Z, d) is defined as dimd(Z) = lim supε→0
log s(Z,ρ,ε)

log 1
ε

.

F. Bolley, A. Guillin, and C. Villani proved the following estimate on s(M(X),W, ε):

Theorem 15. (Theorem A1 in [BGV07]) For ε > 0 small enough, we have:

s(M(X),W, ε) ≤
(

1

ε

)s(X,d,ε/2)

.
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Lemma 16. For any α > dimd(Z), there is C > 0 such that

∀0 < ε < 1, hW (T∗, ε) ≤ Cε−α.

Proof. Obviously, we have hW (T∗, ε) ≤ log s(M(X),W, ε/2) for any ε > 0. By Theorem
15, we get

hW (T∗, ε) ≤ s(X, d, ε/4) log
2

ε
≤ Cε−α,

for some constant C. �

Moverover, when T is K-Lipschitz, we can refine the inequality in Lemma 16. Indeed one
easily checks in this case that T∗ is K-Lipschitz with respect to the Wasserstein distance.
Then we have

hW (T∗, ε) ≤ sup
µ∈M(X)

s(BW (µ,Kε),W, ε),

where BW (µ,Kε) denotes the W -ball of radius Kε centered at µ. However we do not know
any better estimate of supµ∈M(X) s(BW (µ,Kε),W, ε) than the one given in Theorem 15.

To estimate hW (T∗, ε) from below, we first prove a technical lemma.

Lemma 17. Let (X,T ) be a dynamical system of positive entropy. With the notations of
Subsection 4.2 we have

sn

(
W,Tm∗ ,M(X),

γm
2qm

)
≥ 22qm ]Imn .

Proof. Define

H := {(tk)k∈J2qmK : ∃` ≥ 1,∃1 ≤ i1 < i2 < · · · < i` ≤ 2qm , s.t. ti1 = ti2 = · · · = ti` = 1/`},

which is a subset of ∆2qm . Moreover, note that ]H = 22qm . Let Hn be the image of
HImn via Ξ. Clearly, ]Hn = 22qm ]Imn . We will show that Hn is a (n, γm

2qm
)-separated set of

(M(X),W, Tm∗ ). Let µ 6= ν ∈ Hn. Then there exists i ∈ JImn K and a face F of ∆2qm

such that either µ(SFi) ≥ 2−qm , ν(SFi) = 1 or ν(SFi) ≥ 2−qm , µ(SFi) = 1. Without loss of
generality, we assume that it is the former case. It follows by Lemma 5 that

Wm
n (µ, ν) ≥ W (T imµ, T imν),

≥ µ(SFi)d(T imSF i , T
imSFi),

≥ 2−qmγm.

It means that µ and ν are (n, γm
2qm

)-separated. This completes the proof. �

Now we are in a position to prove Theorem 2.

Proof of Theorem 2. Suppose T is of positive entropy and K-Lipschitz. Let U0 and U1 be
an IE-pair and let I be the associated independence set. Then we pick

γm = K−m · d(U0, U1)

2
.
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Thus we have
γm
2qm
≥ c1e

−mc2 ,

where c1 = d(U0,U1)
2

and c2 = logK + d(I) log 2
2

. It follows from Lemma 17 that

hW

(
Tm∗ ,

γm
2qm

)
≥ 1

m
hW

(
Tm∗ ,

γm
2qm

)
,

≥ c2d(I)

log(1/εm)

(
c1

γm/2qm

)− d(I) log 2
2c2

.

Since γm+1/2
qm+1

γm/2qm
is bounded, we conclude that for any α < d(I) log 2

2 logK+d(I) log 2
, there is C > 0

such that

∀0 < ε < 1, hW (T∗, ε) ≥ Cε−α.

�

Remark 18. In the case that (X,T ) is of positive entropy and non-Lipschitz, we may

have limε→0
log hW (T∗,ε)

log 1
ε

= 0, e.g. when X has zero topological dimension by Lemma 16.

As an explicit example, one can consider the full shift on KZ with K being an infinite
zero-dimensional compact space endowed with a metric of zero Minkowski dimension.

When (X,T ) is Lipschitz with positive entropy, the lower Minkowski dimension of
(X,T, d) is positive (see e.g. [Mil]). Then by combining Lemma 16 and Theorem 2 we
get:

Corollary 19. Suppose (X,T ) is of positive entropy and Lipschitz with X a compact metric
space with finite Minkowski dimension. Then there exists α > 1 such that we have

∀0 < ε < 1, α−1 ≤ log hW (T∗, ε)

log 1
ε

≤ α.

7. Mean dimension of the dynamics on the hyperspace

For a compact metrizable space we let 2X be the hyperspace of X, i.e. the set of closed
non empty subsets of X endowed with the Hausdorf distance. For a continuous map
T : X → X we let TK : 2X → 2X be the dynamical system induced by (X,T ) on 2X . These
induced systems have also been studied in [BS75] and [GW95]. In particular it still holds
true that

[htop(T ) > 0]⇒ [htop(TK) =∞],

but there are zero entropy system (X,T ) with htop(TK) > 0. One may wonder about the
relations between the topological entropy of T and the mean dimension (either metric or
topological) of TK. We present below two examples.
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7.1. Example of htop(T ) = 0 and mdim(TK) > 0. Let K be a compact metric space of
finite dimension. Let T : ∪Z∪{∞}K → ∪Z∪{∞}K to be xn 7→ xn+1 for n ∈ Z and x∞ 7→ x∞
where Z ∪ {∞} is seen as the one-point compactification of the integers. Then it is clear
that htop(T ) = 0. On the other hand, it is not hard to verify that the hyperspace system
contains the full shift (KZ, σ). It follows that

mdim(2∪Z∪{∞}K , TK) ≥ stabdim(K).

In particular, we get mdim(2∪Z∪{∞}K , TK) =∞ when K = [0, 1]N.

7.2. Example of htop(T ) > 0 and mdim(TK) = 0. Let X be a zero dimensional compact
metric space. As well known, 2X is a zero dimensional compact metric space. Thus for
any continuous transformation T : X → X, we have mdim(2X , TK) = 0. In particular, for
a full shift (AZ, σ) with 1 < ]A <∞, we have htop(σ) = log ]A > 0 and mdim(σK) = 0.
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[Gou11] Antoine Gournay. Widths of `p balls. Houston J. Math., 37(4):1227–1248, 2011.
[Gro99] Misha Gromov. Topological invariants of dynamical systems and spaces of holomorphic maps. I.

Math. Phys. Anal. Geom., 2(4):323–415, 1999.
[GW95] Eli Glasner and Benjamin Weiss. Quasi-factors of zero-entropy systems. Journal of the American

Mathematical Society, 8(3):665–686, 1995.
[JQ21] Lei Jin and Yixiao Qiao. Mean dimension of product spaces: a fundamental formula, 2021.
[Kat80] A. Katok. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes
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