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Abstract. For a C∞ map f on a compact manifold M we prove that for a

Lebesgue randomly picked point x there is an empirical measure from x with
entropy larger than or equal to the top Lyapunov exponent of Λ df : ΛTM 	 at

x. This contrasts with the well-known Ruelle inequality. As a consequence we

give some refinement of Tsujii’s work [23] relating physical and Sinai-Ruelle-
Bowen measures.

Introduction

Entropy is a master invariant in dynamical systems, which estimates the
dynamical complexity by counting the separated orbits. For a differentiable
system other dynamical quantities of high interest are the Lyapunov ex-
ponents. They are given by the exponential growth rate of the derivative.
Heuristically the first derivative controls the separation of points (as in the
mean value inequality) so that the entropy is always less than or equal to the
(sum of positive) Lyapunov exponents. This inequality, due to Ruelle [20],
holds at any invariant measure. Moreover the case of equality characterizes
the so-called Sinai-Ruelle-Bowen measures for C1+α systems.

Here we use a slightly different framework. We do not consider entropy
and Lyapunov exponent defined on invariant measures but on points. For the
entropy we let h(x) be the supremum entropy of the empirical measures at a
given point x. We may also define a pointwise positive Lyapunov exponent,
denoted by χ+

Λ(x), by considering the limsup in the exponential growth of
the derivative at x acting on the exterior algebra bundle (see Section 1 for the
precise definitions). We then aim to compare h(x) and χ+

Λ(x) ”physically”,
i.e. for Lebesgue almost every point x. For a C∞ system we prove quite
surprisingly the entropy is physically bounded from below by the sum of
positive Lyapunov exponents, i.e.

h ≥ χ+
Λ Lebesgue almost surely.

In [25] Yomdin introduced tools of semi-algebraic geometry in order to
control the local volume growth of C∞ smooth systems. In particular it
allows him to show that Shub’s entropy conjecture holds true in this set-
ting. Using a similar approach we manage to control locally not only the
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volume growth but also the distortion (see also [5] and [6]). The resulting
Reparametrization Lemma of dynamical balls is the key argument in the
proof of our Main Theorem.

The paper is organized as follows. In the first section we recall the notions
of physical, physical-like and Sinai-Ruelle-Bowen measures. We also intro-
duce the strong Lyapunov exponents which provide a new way to estimate
the exponential growth of the derivative at a point. Our Main Theorem and
its Corollaries are stated and discussed in Section 2. The last two sections
are devoted to the proof. Finally we present a counter-example in finite
smoothness in the appendix∗.

1. Background

1.1. Physical measures. Let (M,f) be a topological system, i.e. f : M →
M is a continuous map on a compact metrizable space M . Fix a metric d
on M . We let M(M) (resp. M(M,f)) be the set of Borel probability
measures (resp. f -invariant). Endowed with the weak-∗ topology these sets
are compact metrizable spaces. When (φn : M → R)n∈N is a dense countable
family of the set of real continuous functions on X for the usual supremum
norm then the following convex metric d on M(M) is compatible with the
weak-∗ topology:

∀µ, ν ∈M(M), d(µ, ν) :=
∑
n

∣∣∫ φn dν − ∫ φn dµ∣∣
2n(1 + supx |φn(x)|)

.

We will also consider the set KM(M) of all nonempty closed subsets of
M(M) with the associated Hausdorff metric dH .

The basin Bµ of an invariant measure µ ∈ M(M,f) is the set of points
x ∈ M whose empirical measures µxn := 1

n

∑
0≤k<n δfkx is converging to

µ, when n goes to infinity. According to Birkhof ergodic theorem the set
Bµ has full µ-measure for an ergodic measure µ. In the following we will
always consider a C∞ smooth compact Riemannian manifold (M, ‖ · ‖) and
its induced Riemannian distance d. The (normalized) volume form inherited
from the Riemannian structure will be called the Lebesgue measure and is
denoted by Leb. An invariant measure is said physical when its basin has
positive Lebesgue measure. From the works of Sinai, Ruelle and Bowen
[22, 20, 4] it is known that any C2 Axiom A attractor admits finitely many
ergodic physical measures such that the union of their basin has full Lebesgue
measure in the basin of attraction.

We recall now the concept of physical-like measures [8, 9]. For x ∈M we
let pω(x) ⊂M(M,f) be the accumulation points of the empirical measures
(µxn)n at x. An invariant measure µ ∈M(M,f) is said physical-like when
for any ε > 0 the set {x, d(µ, pω(x)) < ε} has positive Lebesgue measure (in

∗The example given in the appendix is on the interval. Following the same approach we build
in a forthcoming work [7] such counter-examples of surface diffeomorphisms.
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particular the physical measures are physical-like). The set PL = PL(Leb)
of physical-like measures is the smallest compact subset of measures con-
taining pω(x) for Lebesgue almost every point x ∈M . In other terms if one
considers the closed-set valued map

pω : X → KM(M),

x 7→ pω(x)

and its essential range ImLeb(pω) then we have (see Appendix B)

PL =
⋃

K∈ImLeb(pω)

K.

Instead of the Lebesgue measure we may consider any other Borel measure
m and define similarly PL(m) as the smallest compact subset of measures
containing pω(x) for m-almost every point x ∈ M . We let PL(m) be the
set with full m-measure given by points x ∈ M with pω(x) ∈ Imm(pω).
Therefore we have pω(x) ⊂ PL(m) for all x ∈ PL(m).

1.2. Standard Lyapunov exponents. In this section we recall some back-
ground on Lyapunov exponents (see [1] for further details). Let M be a
standard Borel space and let f : M →M be a Borel system. We consider a
measurable fiber bundle π : V → X over M of dimension d equipped with a
measurable Riemannian metric ‖ · ‖x on each fiber Vx = π−1 ({x}), together
a bundle morphism F : V → V with π ◦ F = f ◦ π. The (forward upper)
Lyapunov exponent of (x, v) for x ∈M and v ∈ Vx is defined as follows

χF (x, v) := lim sup
n→+∞

1

n
log ‖Fn(v)‖fnx.

The function χ(x, ·) := χF (x, ·) admits only finitely many values χ1(x) >
... > χp(x)(x) on TM \ {0} and generates a flag 0 ( Vp(x)(x) ( · · · ( V1 =
TxM with Vi(x) = {v ∈ TM, χ(x, v) ≤ χi(x)}. In particular, χ(x, v) =
χi(x) for v ∈ Vi(x) \ Vi+1(x). The function p as well the functions χi and
the vector spaces Vi(x), i = 1, ..., p(x) depend Borel measurably on x. In
the following we work with the Lyapunov exponents (χj)1≤j≤d counted (still
nondecreasingly) with multiplicity, i.e. ∀j ∃ij ≤ p, χj = χij and ]{j, ij =
i} = dim(Vi)− dim(Vi+1).

For a sequence of real numbers (an)n we let lim↘n an the limit in n of
the sequence (an)n when the sequence is converging to infn an. By the
subadditive ergodic theorem we have for all µ ∈M(M,f) :∫

χ+
1 dµ =

↘
lim
n

1

n

∫
log+ |||Fn|||x dµ(x).(1.1)

For any positive integer k less than or equal to d we let χk be the top
Lyapunov exponent of the bundle morphism ΛkF induced by F on the k-
exterior bundle ΛkV (in particular χ1 = χ1). We also consider the top
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Lyapunov exponent χΛ = maxk χ
k of the action ΛF on the exterior algebra

bundle ΛV = ⊕kΛkV . We have then for all µ ∈M(M,f),∫
χ+

Λ dµ =
↘

lim
n

1

n

∫
log+ max

k

∣∣∣∣∣∣∣∣∣ΛkFn∣∣∣∣∣∣∣∣∣
x
dµ(x).

A point is said (forward) Lyapunov regular when χk(x) =
∑k

i=1 χi(x)
for all 1 ≤ k ≤ d. By Oseledets theorem [16] the set of Lyapunov regu-
lar points has full µ-measure for any Borel f -invariant probability measure
µ (but it may have zero Lebesgue measure, see [17]). Moreover we have
χ+

Λ(x) =
∑

j χ
+
j (x) when x is Lyapunov regular and therefore we get for all

µ ∈M(M,f), ∫
χ+

Λ dµ =

∫ ∑
j

χ+
j dµ.

1.3. Empirical Lyapunov exponent. Now we assume that M is a com-
pact metric space, f : M →M a continuous map, V a continuous Riemann-
ian bundle and F : V → V a continuous bundle morphism. By (1.1) the
function µ 7→

∫
χ+

1 dµ is then upper semicontinuous onM(M,f) as a nonin-
creasing limit of continuous functions. We introduce a new kind of pointwise
positive Lyapunov exponents, called empirical maximal exponent. First
we let for all p ≥ 1 and for all x ∈M

λp(x) := lim sup
n

1

n

n−1∑
l=0

log+ |||F p|||f lx.

Clearly we have 1
pλp(x) ≥ χ+(x) by submultiplicativity of the subordinate

norm. Moreover the sequence (λp(x))p is a subadditive sequence. Then we
let for all x ∈M

λ(x) :=
↘

lim
p

1

p
λp(x) ≥ χ+(x).

Lemma 1. With the above notations, we have for all x ∈M

sup
µ∈pω(x)

∫
χ+

1 dµ = λ(x).

Proof. Let x ∈ M . Let µ = limk µ
x
nk
∈ pω(x) for an increasing sequence of

integers (nk)k. For all n and p we have∫
log+ |||F p|||y dµ

x
n(y) =

1

n

n−1∑
l=0

log+ |||F p|||f lx.

Taking the limit over n = nk when k goes to infinity we get∫
log+ |||F p|||y

p
dµ(y) ≤ λp(x)

p
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and by taking the limit when p goes to infinity we have finally

sup
µ∈pω(x)

χ+(µ) ≤ λ(x).

Let us now show supµ∈pω(x) χ
+(µ) ≥ λ(x). For any p there exist a subse-

quence (nk,p)k such that

λp(x) = lim
k

1

nk,p

nk,p−1∑
l=0

log+ |||F p|||f lx.

Then if µp ∈ pω(x) is a weak limit of (µxnk,p)k we have

(1.2)

∫
log+ |||F p|||y dµp(y) = λp(x).

For any µ ∈M(M,f) and for any z ∈ X, the sequences
(∫

log+ |||F p|||y dµ(y)
)
p

and (λp(z))p being both subadditive the terms χ+(µ) and λ(z) are respec-

tively the limits of the nonincreasing sequences

(∫
log+ |||F pk |||y dµ(y)

pk

)
k

and(
λpk (z)

pk

)
k

for any increasing sequence of integers (pk)k with pk | pk+1 for all

k.
Fix such a sequence (pk)k. We get :

sup
µ∈pω(x)

χ+(µ) = sup
µ∈pω(x)

inf
p

∫
log+ |||F p|||y

p
dµ(y),

= sup
µ∈pω(x)

inf
k

∫
log+ |||F pk |||y

pk
dµ(y)

By Proposition 2.4 in [2] we may invert the supremum and the infimum in
the right-hand side term :

sup
µ∈pω(x)

χ+(µ) = inf
k

sup
µ∈pω(x)

∫
log+ |||F pk |||y

pk
dµ(y),

≥ inf
k

∫
log+ |||F pk |||y

pk
dµpk(y),

≥ inf
k

λpk(x)

pk
,

where the last inequalities follow from (1.2). Finally we get

sup
µ∈pω(x)

χ+(µ) ≥ inf
p

λp(x)

p
= λ(x).

�
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We let λΛ be the empirical Lyapunov exponent associated to the bundle
morphism ΛF : ΛV → ΛV . Then for all x ∈M , we have

sup
µ∈pω(x)

∫
χ+

Λ dµ = λΛ(x) ≥ χ+
λ (x).

A point x is said to be pω-regular when we have λΛ(x) = χ+
λ (x). For an

ergodic measure µ, almost every point x with respect to µ lies in the basin
Bµ of µ (in other terms pω(x) = µ) and χ+

Λ(x) =
∫
χ+

Λ dµ. Using the ergodic
decomposition it follows then from Lemma 1 :

Lemma 2. pω-regular points have full measure with respect to any invariant
measure.

1.4. Essential supremum of Lyapunov exponents. In the present pa-
per we are interested in empirical measures with Lebesgue typical initial
conditions and we do not assume there exists an invariant measure abso-
lutely continuous with respect to Leb. In particular it may happen that the
set of Lyapunov regular points has not full Lebesgue measure ( see e.g. [17]
for the eight attractor). We will never assume Lyapunov regularity in the
present paper.

We denote by λΛ the essential supremum of λΛ with respect to Leb.

We also let χ+
Λ (resp. χk for k = 1, · · · , d) be the essential supremum of

χ+
Λ (resp. χk) with respect to the Lebesgue measure, in particular χ+

Λ =

max(0, χ1, · · · , χd). As the set PL := PL(Leb) has full Lebesgue measure
we have

λΛ ≤ sup
x∈PL

λΛ(x)

and then it follows from Lemma 1 and λΛ ≥ χ+
Λ that

χ+
Λ ≤ sup

µ∈PL
χ+

Λ(µ).

In general the equality does not hold (see Remark 6), where we have 0 =

χ+
Λ < χ+

Λ(δS) = supµ∈PL χ
+
Λ(µ) with S being the associated saddle hyper-

bolic point.
Based on Yomdin’s theory and the volume growth estimates due to New-

house, Koslowski [11] showed the following integral formula for the topolog-
ical entropy of a C∞ smooth system :

htop(f) = lim
n

1

n
log

∫
max
k
‖Λkdxfn‖ dLeb(x).

By Jensen’s inequality we have for all integers n

log

∫
max
k
‖Λkdxfn‖ dLeb(x) ≥

∫
log max

k
‖Λkdxfn‖ dLeb(x).

According to Borel-Cantelli Lemma, for all γ > 0, the set {x ∈M, maxk ‖Λkdxfn‖ ≥
en(χ+

Λ−γ)} has Lebesgue measure larger than e−nγ for infinitely many n.
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Therefore we conclude that

(1.3) htop(f) ≥ lim sup
n

1

n

∫
log max

k
‖Λkdxfn‖ dLeb(x) ≥ χ+

Λ .

1.5. Ruelle inequality. From now on we consider a compact manifold M
of dimension d, a C1 map f : M → M and the Lyapunov exponent with
respect to the derivative cocycle df : TM → TM . We recall that for a C1

diffeomorphism Ruelle’s inequality [20] the metric entropy of an invariant
measure is bounded from above by the sum of its positive Lyapunov ex-
ponents. With the previous notations, this inequality may be written as
follows :

Theorem 1 (Ruelle). Let f : M →M be a C1 map on a compact manifold,
then for all µ ∈M(M,f),

h(µ) ≤
∫
χ+

Λ dµ.

Equivalently, for all x ∈M ,

sup
µ∈pω(x)

h(µ) ≤ λΛ(x).

An ergodic measure µ ∈ M(M,f) is said hyperbolic when any of its
Lyapunov exponent

∫
χj dµ, j = 1, · · · , d is nonzero. For a surface dif-

feomorphism, any ergodic measure with positive entropy is hyperbolic by
Ruelle’s inequality.

1.6. Sinai-Ruelle-Bowen measures. For a C1+α diffeomorphism f of M ,
an invariant measure µ is said to be a Sinai-Ruelle-Bowen measure (SRB
measure for short) when µ-almost every point has a positive Lyapunov ex-
ponent and the disintegration of µ along the unstable manifolds is absolutely
continuous with respect to the volume on the unstable manifolds inherited
from the Riemanian structure on M .

From Pesin theory any ergodic hyperbolic SRB measure is physical [18].
For an invariant measure µ of a C1+α diffeomorphism we let Tµ be the set of
(forward) Lyapunov regular points x in the basin Bµ of µ with χi(x) = χi(µ)
for all i. In particular any point x in Tµ satisfies χ+

Λ(x) =
∑

i χ
+
i (x) =

χ+
Λ(µ) and therefore any such point is pω-regular. Tsujii showed that there

exists an SRB measure when the union of Tµ over all ergodic hyperbolic
measures has positive Lebesgue measure. He also proved that an ergodic
hyperbolic measure µ is an SRB measure if and only if Tµ has positive
Lebesgue measure.

Ledrappier and Young [12] (see also [19] for the noninvertible version) gave
a thermodynamical characterization of SRB measures : they are exactly the
invariant measures with a positive Lyapunov exponent almost everywhere
satisfying the so-called Pesin formula (equality case in Ruelle’s inequality) :

h(µ) =

∫ ∑
j

χ+
j dµ.
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In particular any SRB measure has positive entropy. It is thus hyperbolic
when considering a surface diffeomorphism. The set of SRB measures is a
face of the Choquet simplex of invariant measures, i.e. the ergodic compo-
nents of a SRB measure are also SRB measures. As a direct consequence of
the aforementioned results we have for any C1+α surface diffeomorphism :

sup
µ SRB

h(µ) ≤ sup
µ physical

h(µ),

≤ sup
µ physical

∫
χ1 dµ,

≤ χ1.

Question. Do we have supµ∈PL h(µ) ≤ χ1 for a C1 (resp. C1+α, C∞)
surface diffeomorphism?

2. Statements

We aim to compare the entropy of physical-like measures with the (strong)
positive sum of Lyapunov exponents for C∞ systems.

Main Theorem. Let f : M →M be a C∞ map. Then for Lebesgue almost
every point x there exists µx ∈ pω(x) with

h(µx) ≥ χ+
Λ(x).

Of course the inequality does not hold true for all x, e.g. when x is a
periodic point with a positive Lyapunov exponent. However the set of such
points has zero Lebesgue measure.

Remark 2. For a C2 Axiom A diffeomorphism f : M → M , there are
finitely many ergodic physical measures whose basins cover a set of full
Lebesgue measure. Such measures also satisfies Pesin formula. In this case
we have moreover χ+

Λ(x) =
∫

log Jac(df |Eu)(x) dµ(x) for x ∈ Bµ by continu-
ity of x 7→ Jac(df |Eu)(x). Therefore for Lebesgue almost every point x we
get h(µx) = χ+

Λ(x) with pω(x) = {µx}.
As a direct consequence of the Main Theorem we obtain the following

lower bound on the entropy of a physical measure.

Corollary 3. Let µ be a physical measure of a C∞ map f : M →M . Then

h(µ) ≥ χ+
Λ |Bµ ,

where χ+
Λ |Bµ is the essential supremum of χ+

Λ on Bµ.

The Main Theorem and Corollary 3 are wrong in finite smoothness. We
give in the Appendix A an example of a Cr smooth interval map for any
finite r ≥ 1 with a Dirac physical measure at a source such that the essential
supremum of the Lyapunov exponent on its basin is positive.

We recover Inequality (1.3) obtained from Kozlovski integral formula.
More precisely we have :
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Corollary 4. Let f : M →M be a C∞ map. Then

max
µ∈PL

h(µ) ≥ χ+
Λ .

Proof. For any ε > 0 the set {χ+
Λ > χ+

Λ − ε} has positive Lebesgue measure,
so that there exists a point x in this set with pω(x) ⊂ PL which satisfies
the conclusion of the Main Theorem, i.e. there exist µx ∈ pω(x) with

h(µx) ≥ χ+
Λ(x) > χ+

Λ − ε.
We conclude by upper semicontinuity of the metric entropy for C∞ maps
[15] and by compactness of PL. �

For C∞ maps we get the following refinement of Tsujii’s theorem.

Corollary 5. Let f : M →M be a C∞ map.

(1) Assume the set of pω-regular points in {χ+
Λ > 0} has positive Lebesgue

measure. Then f admits an SRB measure.
(2) Let µ be a physical measure such that the set of pω-regular points in
{χ+

Λ > 0} ∩ Bµ has positive Lebesgue measure. Then µ is an SRB
measure.

We recall Tsujii’s results only deal with diffeomorphisms but under the
weaker C1+α smoothness assumption. Contrarily to Tsujii’s statement we
do not assume in the second item neither ergodicity nor hyperbolicity of the
physical measure µ.

Proof. We only prove the first item. The proof of the second one follows the
same lines. According to the Main Theorem, for Lebesgue almost every x
in {χ+

Λ = λΛ > 0} there is an SRB measure µx ∈ pω(x) satisfying

h(µx) ≥ χ+
Λ(x).

Moreover it follows from Ruelle’s inequality and Lemma 1 that

λΛ(x) ≥ χ+
Λ(µx) ≥ h(µx).

Since we have χ+
Λ(x) = λΛ(x) the measure µx satisifes Pesin’s entropy for-

mula and is therefore an SRB measure. �

Unlike the Main Theorem, which is false in finite smoothness, we conjec-
ture Corollary 5 holds true for any C1+α map. It can be deduced from the
Reparametrization Lemma in [5] the case of C1+α interval maps and surface
diffeomorphisms. However as it involves stronger technicalities we prefer to
only consider C∞ maps in the present paper.

Remark 6. The C∞ assumption does not imply that the basin of an ergodic
physical measure contains a positive Lebesgue measure subset of pω-regular
points. If we consider again the C∞ eight attractor of Bowen [17, 13] the
strong Lyapunov exponent λΛ(x) is equal to the unstable Lyapunov exponent
of the saddle physical measure, whereas according to our Main Theorem we
have χ+

Λ(x) = 0 for Lebesgue almost every point in the basin.
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3. Some technical lemmas

For a C2 Anosov surface diffeomorphism one build SRB measures as fol-
lows. One takes the inherited Lebesgue probability measure µ on a local

unstable disc and then checks that the limit ν of
(

1
n

∑
0≤k<n f

kµ
)
n

disin-

tegrates absolutely continuously on unstable manifolds with respect to the
Lebesgue measure. Here we follow somehow a similar approach by consid-
ering the Lebesgue probability measure µ on a smooth disc with Lebesgue
typical exponential growth. Then we estimate the entropy of ν by using a
Reparametrization Lemma of dynamical balls.

3.1. Lyapunov exponent along smooth leaves. In the Lemma below
we select the appropriate smooth disc.

Lemma 3. Let 1 ≤ k ≤ d and let a < χk. We consider a Borel subset E of
{a < χk} with positive Lebesgue measure. Then there exist a compact subset
F of E and a foliation box U with respect to a C∞ smooth k-foliation F
with Leb(U ∩ F ) > 0 such that

∀x ∈ U ∩ F, χk(x, TxF) > a,

where TxF denotes any unit-norm element of Λk(TM) generating the tan-
gent space at x of the F-leaf containing x.

Proof. Let F be a compact subset of E with Leb(F ) > 0 such that x 7→ Vi(x)
is continuous on F for all i, where (Vi(x))i denotes the Lyapunov flag at x
of Λkdf acting on ΛkTM (in particular recall V1(x) = ΛkTxM). Let x
be a Lebesgue density point of F and let u ∈ V1(x) \ V2(x). We may
assume that u is a monomial exterior product and we then let U be the
associated k-vector subspace of TxM . We denote the exponential map at x
by expx : TxM → M . Then for a small enough neighborhood U of x the
vector

(
Λkd expx(u)

)
y

belongs to V1(y) \ V2(y) for all y ∈ U ∩ F . Finally

this vector generates the tangent space at y of the foliation F = expx(Fx)
where Fx is the foliation in U-directed k-planes of TxM . �

3.2. Entropy computation. We state now a technical entropy computa-
tion due to Misiurewicz [14] in its elementary proof of the variational prin-
ciple for the entropy, which we will use to bound from below the entropy of
ν. For a probability space (X,B, µ) and a finite measurable partition P of
X we denote the static entropy of P as follows

Hµ(P ) := −
∑
A∈P

µ(A) logµ(A).

Lemma 4. [14]Let (X, f) be a Borel system and let P be a finite mea-
surable partition of X. We consider a sequence (µn)n of probability Borel
measures on X and the associated sequence (νn)n given for all n > 0 by
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νn = 1
n

∑
0≤k<n f

kµn. Then we have with Pn =
∨n−1
k=0 f

−kP

∀m > 0,
1

m
Hνn(Pm) ≥ 1

n
(Hµn(Pn)− 3m log ]P ) .

3.3. Local distortion. The key argument which allows to control the dis-
tortion is given by the following lemma whose proof relies on tools of semi-
algebraic geometry. For x ∈ M , n ∈ N and α > 0 we let Bf (x, n, α) be the
dynamical ball at x of length n and size α :

Bf (x, n, α) := {y ∈M, d(f lx, f ly) < α for l = 0, ..., n− 1}.

Reparametrization Lemma. Let f : M → M be a C∞ map. Let a ∈ R,
γ ∈ R+ \ {0} and let k be a positive integer with k ≤ d. For some α > 0,
for all x ∈ M and for all σ : [0, 1]k → M of class C∞ with ‖dσ‖ ≤ 1 and
Λkdtσ 6= 0 for all t ∈ [0, 1]k, there exists for large enough n (depending on
σ but not on x) a family of reparametrizations (θni : [0, 1]k 	)i∈In with the
following properties:

•
⋃
i∈In Im(θni ) c †

{
t ∈ [0, 1]k, ‖Λ

kdt(fn◦σ)‖
‖Λkdtσ‖ ≥ ena and σ(t) ∈ B(x, n, α)

}
,

• ∀i ∈ In, ‖d(fn ◦ σ ◦ θni )‖ ≤ 1,

• ∀i ∈ In ∀t, t′ ∈ Im(θni ), ‖Λ
kdt(fn◦σ)‖

‖Λkdt′ (fn◦σ)‖ ≤ 2,

• ]In ≤ eγn.

Roughly speaking, the preimage under σ of any dynamical ball of length n
with small enough radius may be covered by an exponentially small number
of pieces, where the distorsion of fn ◦ σ is bounded.

Such Reparametrizations Lemmas first appear in the pioneering work of
Yomdin [25] (see also [10]) in his proof of Shub’s entropy conjecture for C∞

systems. In Yomdin’s earlier form the control of the distortion given by the
third item did not appear. Moreover the reparametrized set was the whole
dynamical ball (here this is the case when f is a local diffeomorphim by
choosing a small enough). Others similar forms of the Reparametrization
Lemma were used succesfully by the author to study symbolic extensions
and exponential growth of periodic points for Cr surface diffeomorphisms
[5, 6]. The technical proof could be skipped at a first reading.

We first establish a version of the Reparametrization Lemma for a C∞

nonautonomous system F = (fl : B → Rd)l∈N on the unit Euclidean ball B of
Rd. For m ∈ N we let Fm be the finite sequence of C∞ maps Fm := (fl)0≤l<m.
In this context we define the dynamical ball BFm as follows

BFm := {y ∈ B, fl ◦ · · · ◦ f0(y) ∈ B for 0 ≤ l < m}.

We then put fm+1 = fm ◦ · · · ◦ f0 : BFm → Rd (let also f0 be the identity map
of Rd).

†By
⋃
i∈I Ai c B we mean that

⋃
i∈I Ai ⊃ B and Ai ∩B 6= ∅ for all i ∈ I.
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Let A = (al)l∈N be an infinite sequence of integers. For the corresponding
finite sequences Am := (a0, ..., am−1) we also consider the following dynam-
ical ball induced by Fm on the k-exterior bundle of the tangent space TRd
endowed with the norm induced by the Euclidean norm:

Bk(Am) := {(y, v) ∈ Λk(TRd), ‖v‖ = 1, y ∈ BFm

and ∀l = 0, ...,m− 1, dlog ‖Λkdflyfl(vl)‖e = al},

with the notations vl =
Λkdyfl(v)
‖Λkdyfl(v)‖ , l = 0, ...,m − 1, and d·e for the ceiling

function.
For a C∞ smooth k-disc s : [0, 1]k → Rd we aim to reparametrize the set

Cs(An) defined as follows :

Cs(Am) =

{
t ∈ [0, 1]k,

(
s(t),

Λkdts

‖Λkdts‖

)
∈ Bk(Am)

}
.

Proposition 7. Let r > 2 be an integer. Assume ‖dsfl‖ ≤ 1 for all s =
2, · · · , r and for all l ∈ N. Then for all m ∈ N there exists a family of
reparametrizations (φmi : [0, 1]k 	)i∈I(Am) with the following properties :

(1)
⋃
i∈I(Am) Im(φmi ) c Cs(Am),

(2) ∀i ∈ I(Am) ∀s = 0, ..., r,

‖ds (fm ◦ s ◦ φmi ) ‖ ≤ 1,

(3) ∀i ∈ I(Am) ∀s = 1, ..., r − 1,

‖ds
(
t 7→ Λkdφmi (t)(f

m ◦ s)
)
‖ ≤ 1

2
max
u∈[0,1]k

‖Λkdφmi (u)(f
m ◦ s)‖,

(4) ]I(Am) ≤ C(r, d)m
∏m−1
l=0 max

(
1, ‖d0fl‖k/r,

(
max(1,‖Λkd0fl‖)

eal

) k
r−1

)
with

C(r, d) being a universal function in r and d.

Proof. We argue by induction on m. Assume the family (φmi : [0, 1]k 	
)i∈I(Am) is already built for Am = (a0, · · · , am−1). We proceed to the in-
ductive step by building the required family of reparametrizations with re-
spect to Am+1 = (a0, · · · , am). From the formula for the derivatives of a
composition and the induction hypothesis we get therefore for any φ = φmi :

‖dr−1
(
t 7→ Λkdφ(t)(f

m+1 ◦ s)
)
‖ = ‖dr−1

(
t 7→ Λkdfm◦s◦φ(t)fm+1 ◦ Λkdφ(t)(f

m ◦ s)
)
‖,

≤ A(r, d) max
0≤s≤r−1

‖ds
(

Λkdfm+1

)
‖max

t
‖Λkdφ(t)(f

m ◦ s)‖,

≤ A(r, d) max
(

1, ‖Λkd0fm+1‖
)

max
t
‖Λkdφ(t)(f

m ◦ s)‖

and

‖dr
(
fm+1 ◦ s ◦ φ

)
‖ = ‖dr−1 (dfm◦s◦φfm+1 ◦ dφ(fm ◦ s)) ‖,
≤ A(r, d) max (1, ‖d0fm+1‖) ,
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for some universal function A in r and d.

We use now the following lemma which is a slightly different version of
the Main Lemma in [10].

Lemma 5. Let G0 : [0, 1]e → Re′ and G1 : [0, 1]e → Re′′ be respectively Cr

and Cs maps. We denote by Be′ and Be′′ the unit Euclidean balls of Re′ and
Re′′. Then there exists a family (ψj : [0, 1]e 	)j∈J such that :

•
⋃
j∈J Im(ψj) c G

−1
0 (Be′) ∩G−1

1 (Be′′),

• ∀j ∈ J ∀k = 0, ..., r, ‖dk (G0 ◦ ψj) ‖ ≤ 1,

• ∀j ∈ J ∀k = 0, ..., s, ‖dk (G1 ◦ ψj) ‖ ≤ 1/12,

• ]J ≤ B(r, s, e, e′, e′′) ×max
(
1, ‖drG0‖e/r, ‖dsG1‖e/s

)
for some uni-

versal function B.

The proof follows the same lines, the unique difference being that one
applies the Algebraic Lemma in [10] simultaneously to the interpolating
polynomials of G0 and G1 with respective (maybe distinct) degrees r and s.

To conclude the inductive step we apply Lemma 5 for every i ∈ I(Am)

with the Cr−1 map G1 : s 7→
Λkdφm

i
(s)(f

m+1◦s)
eam max

u∈[0,1]k
‖Λkdφm

i
(u)(f

m◦s)‖ and the Cr map

G0 = fm+1 ◦ s ◦ φmi (for any t ∈ Im(φmi ) ∩ Cs(Am+1) we have ‖G1(t)‖ ≤
1). We let ψj , j ∈ J = J (φmi ), be the resulting reparametrizations.

The maps φm+1
i,j = φmi ◦ ψj over all (i, j) ∈ I(Am+1) := {(i, j), i ∈

I(Am) and j ∈ J (φmi ) with Im(φmi ◦ ψj) ∩ Cs(Am+1) 6= ∅} give the re-

quired family of reparametrizations for the (m+ 1)th step. Let us just check
the new reparametrizations φm+1

i,j satisfies (3) for any s = 1, ..., r − 1 :

‖ds
(
t 7→ Λkdφm+1

i,j (t)(f
n+1 ◦ s)

)
‖ ≤ eam max

u∈[0,1]k
‖Λkdφmi (u)(f

m ◦ s)‖‖ds(G1 ◦ ψj)‖,

≤ eam−1

4
max
u∈[0,1]k

‖Λkdφmi (u)(f
m ◦ s)‖,

≤ eam−1

2
min

u∈[0,1]k
‖Λkdφmi (u)(f

m ◦ s)‖.

Since we have Im(φm+1
i,j ◦ ψj) ∩ Cs(Am+1) 6= ∅ there exists v ∈ [0, 1]k, with

‖Λkd
φm+1
i,j

(v)
(fm+1◦s)‖

‖Λkd
φm+1
i,j

(v)
(fm◦s)‖ ≥ e

am−1 and therefore

‖ds
(
t 7→ Λkdφm+1

i,j (t)(f
m+1 ◦ s)

)
‖ ≤ eam−1

2
‖Λkdφm+1

i,j (v)(f
m ◦ s)‖,

≤ 1

2
‖Λkdφm+1

i,j (v)(f
m+1 ◦ s)‖,

≤ 1

2
max
u∈[0,1]k

‖Λkdφm+1
i,j (u)(f

m+1 ◦ s)‖.



14 DAVID BURGUET

This concludes the proof of Proposition 7. �

A sequence Am = (a0, · · · , am−1) is said A-admissible for A ∈ R when

Bk(Am) ∩ {(y, v) ∈ Λk(TRd), ‖v‖ = 1 and ‖Λkdyfm(v)‖ ≥ emA} 6= ∅.

In particular we have then
∑m−1

l=0 al ≥ mA.
Let F be the real function R+ 3 t 7→ t

[
t−1 log(t−1) + (1− t−1) log(1− t−1)

]
,

in particular F (t) ≤ t log 2 for all t and limt→+∞
F (t)
t = 0. By a standard

combinatorial argument (see e.g. Lemma 8 in [5]) we have :

Lemma 6. Let A ∈ R. Assume
∣∣log+ ‖Λkd0fl‖ − log+ ‖Λkdyfl‖

∣∣ < 1 for all
l ∈ N and y ∈ B. Then the number km of A-admissible sequences Am is
bounded from above as follows

log km
m

≤ F (λk(Fm) + 2−A),

where λk(Fm) := 1
m

∑m−1
l=0 log+ ‖Λkd0fl‖

We are now in position to prove the Reparametrization Lemma.

Proof of the Reparametrization Lemma. Without loss of generality we can
assume a < −1. Fix then γ > 0 and x ∈ X and take a positive integer p
precised later on. Let N∗ 3 n = p(m− 1) + q with m, q ∈ N∗ and 0 < q ≤ p.
As in the previous works [25, 10, 5] we may replace‡ σ by s = α−1σ(α·) for
α > 0 and the local dynamic of f around x of time n by the nonautonomous
system Fm = (fl)0≤l<m defined on the unit Euclidean ball B of Rd by fl =

α−1fp(fplx+ α·) for 0 ≤ l < m− 1 and fm−1 = α−1f q(fp(m−1)x+ α·). We
assume here without loss of generality that M is the d-torus Rd/Zd and α
is less than 1 (in general, without an affine structure, one should conjugate
f with the exponential map at f lx to get a map fl on B ⊂ Rd and take α
less than the radius of injectivity of (M, ‖ · ‖). Moreover one has to replace
the Euclidean norm by the Riemanian norms along the orbit of x, in the
nonautonomous system).

We may take α > 0 so small that
∣∣log+ ‖Λkd0fl‖ − log+ ‖Λkdyfl‖

∣∣ < 1 for
all 0 ≤ l < m and y ∈ B. We have p/2 ≤ n/m(≤ p) once m ≥ 2. Therefore
in this case a an/m-admissible sequence Am is ap/2-admissible. It follows
then from Lemma 6 that the number km of an/m-admissible sequences Am
satisfies

log km
m

≤ F (λk(Fm) + 2− ap/2),

Moreover we have

Bf (x, n, α) ⊂ BFm

‡Of course we only reparametrize in this a way the subset σ(α[0, 1]k). But one can
reparametrize similarly σ(Cα) for any subcube Cα of [0, 1]k of size α and we only need dα−1ed
such subcubes to cover [0, 1]k.
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and for all t ∈ α[0, 1]k

‖Λkdt(fn ◦ σ)‖
‖Λkdtσ‖

=
‖Λkdα−1t(f

m ◦ s)‖
‖Λkdα−1ts‖

.

Therefore we get

⋃
{αCs(Am), Am an/m-admissible } ⊃{

t ∈ α[0, 1]k,
‖Λkdt(fn ◦ σ)‖
‖Λkdtσ‖

≥ ena and σ(t) ∈ B(x, n, α)

}
.

For γ > 0 we take r such that

max(1, ‖df‖k/r)×

(
max

(
1, ‖Λkdf‖

)
ea

) k
r−1

< eγ/6.

We consider then an integer p so large that

p >
6 (2k + logC(r, d))

γ

and

sup
x>pγ/3 log 2

F (x)

x− 2
<

γ

6kmax(log ‖df‖, |a|)
.

This last constraint allows to control the number km of an/m-admissible
sequences Am (observe λk(Fm) ≤ pk log+ ‖df‖):

log km
m

≤ F
(
λk (Fm) + 2− ap/2

)
,

≤ max

((
λk(Fm)− ap/2

)
sup

x>pγ/3 log 2

F (x)

x− 2
, sup
x≤pγ/3 log 2

F (x)

)
,

≤ max

(
pγ
(
k log+ ‖df‖+ |a|/2

)
6kmax(log+ ‖df‖, |a|)

, pγ/3

)
,

log km
m

≤ pγ/3.

Moreover, for any an/m-admissible sequence Am = (a0, · · · , am−1) we

have max(1,‖Λkd0fl‖)
eal ≥ 1/e2 for any 0 ≤ l < m and therefore
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C(r, d)m
m−1∏
l=0

max

1, ‖d0fl‖k/r,
(

max(1, ‖Λkd0fl‖)
eal

) k
r−1


≤ (e2kC(r, d))m

m−1∏
l=0

max
(

1, ‖d0fl‖k/r
)
×
m−1∏
l=0

(
max(1, ‖Λkd0fl‖)

eal

) k
r−1

,

≤ (e2kC(r, d))m

max(1, ‖df‖k/r)×
(

max(1, ‖Λkdf‖)
ea

) k
r−1

n

,

≤ e2kC(r, d)eγn/3,

where the last inequality follows from m ≤ 1 + n
p ≤ 1 + γn

6(2k+logC(r,d))).

We fix finally α > 0 so small that ‖dsfl‖ ≤ αs−1‖dsf‖ ≤ 1 for all s =
2, · · · , r and for all l ∈ N. The reparametrizations (φmi )i∈I(Am) built in
Proposition 7 with respect to Fp over all an/m-admissible sequencesAm then
satisfies the conclusion of the Reparametrization Lemma after a rescaling of
size α:

•⋃{
αφmi ([0, 1]k), i ∈ I(Am) and Am an/m-admissible

}
⊃
⋃
{αCs(Am), Am an/m-admissible }

⊃
{
t ∈ α[0, 1]k,

‖Λkdt(fn ◦ σ)‖
‖Λkdtσ‖

≥ ena and σ(t) ∈ B(x, n, α)

}
.

By taking a subfamily we may assume the image of each reparametriza-
tion has a non empty intersection with this last set.
• ∀Am, i ∈ I(Am),

‖d(fn ◦ σ ◦ αφmi )‖ = α‖d (fm ◦ s ◦ φmi ) ‖,
≤ α < 1.

• ∀Am, i ∈ I(Am), we get from Lemma 7 (with the notation ‖Λkdφg‖ :=

maxu∈[0,1]k ‖Λkdφ(u)g‖ for maps φ : [0, 1]k 	 and g : [0, 1]k → Rd or

M):

‖d
(
t 7→ Λkdαφmi (t)(f

n ◦ σ)
)
‖ = ‖d

(
t 7→ Λkdφmi (t)(f

m ◦ s)
)
‖,

≤ 1

2
‖Λkdφmi (fm ◦ s)‖,

≤ 1

2
‖Λkdαφmi (fn ◦ σ)‖.

Then it follows from the mean value inequality :

∀t, t′ ∈ [0, 1]k, ‖Λkdαφmi (t)(f
n◦σ)−Λkdαφmi (t′)(f

n◦σ)‖ ≤ 1

2
‖Λkdαφmi (fn◦σ)‖
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and by the triangular inequality

‖Λkdαφmi (t)(f
m ◦ σ)‖ ≥ ‖Λkdαφmi (t′)(f

m ◦ σ)‖ − 1

2
‖Λkdαφmi (fm ◦ σ)‖.

Finally we get by taking the maximum over t′ ∈ [0, 1]k :

‖Λkdαφmi (t)(f
m ◦ σ)‖ ≥ 1

2
‖Λkdαφmi (fm ◦ σ)‖.

•
]{φmi , i ∈ I(Am) and Am an/m− admissible}

≤
∑

Am an/m−admissible

]I(Am),

≤ e2kC(r, d)reγn/3km,

≤ e2kC(r, d)reγn/3eγmp/3,

≤ eγn for n large enough (with p staying fixed).

�

Remark 8. In the proof of the Main Theorem below, we will only need to
apply the Reparametrization Lemma for a > 0.

4. Proof of the Main Theorem

For 1 ≤ k ≤ d and a < χk we let PLka = PL(Leb{χk>a}) be the set of

points x in M with pω(x) ⊂ PL(Leb{χk>a}). Recall Leb{χk>a}(PL
k
a) = 1.

Proposition 9. For any 1 ≤ k ≤ d and a < χk we have

∀x ∈ PLka ∃µx ∈ pω(x), h(µx) ≥ a.

We first prove the Main Theorem assuming the above Proposition 9. Let
A be a countable and dense subset of R+. The countable intersection E
over 1 ≤ k ≤ d and ak ∈ A of the sets PLkak ∪ {χ

k ≤ ak} has full Lebesgue
measure. Fix x ∈ E and let us show that there exists µx ∈ pω(x) with
h(µx) ≥ χ+

Λ(x). We may assume χ+
Λ(x) > 0. Take k with χk(x) = χ+

Λ(x).

For any ak ∈ A with ak < χk(x) we have h(µx) ≥ ak for some µx ∈ pω(x),
according to Proposition 9. Since A is dense in R+ and the metric entropy
is upper semicontinuous we conclude that

sup
µ∈pω(x)

h(µ) = max
µ∈pω(x)

h(µ) ≥ χ+
Λ(x).

Proof of Proposition 9. Fix x in PLka. For all ε > 0 the set E = {y, χk(y) >
a and dH (pω(y), pω(x)) < ε/2} has positive Lebesgue measure (by defini-
tion of PLka). Let F be the subset of E and let U be the F-foliation box
given both by Lemma 3. Fix γ, ε > 0. As the foliation is smooth, there is by
Fubini’s theorem a leaf L of F intersecting F in a set of positive Lebesgue
measure (for the Lebesgue measure LebL induced on the smooth leaf L). Let
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V be a finite cover of pω(x) by balls V of radius ε
2 centered at xV ∈ pω(x).

We put for all integers n and for all V ∈ V
BV
n (= BV

n (x)) := {y ∈ L ∩ F ⊂ U, ‖Λkdfn(TyF)‖ ≥ ena

and d(µyn, V ) < ε/2}.

By Borel-Cantelli Lemma we have LebL(BV ′
n ) ≥ e−nγ for some V ′ ∈ V

and for n in an infinite subset Iε,γ of positive integers. Indeed if not we
should have LebL(lim supnB

V
n ) = 0 for all V ∈ V, but as by Lemma 4

we have L ∩ F ⊂ {y, χk(y, TyF) > a and dH (pω(y), pω(x)) < ε/2} ⊂⋃
V ∈V lim supnB

V
n , it would contradict LebL(F ) > 0. For n ∈ Iε,γ we let µn

be the probability measure induced on BV ′
n by the Lebesgue measure LebL

on L and νn := 1
n

∑n−1
l=0 f

lµn =
∫
µyn dµn(y). By convexity of the metric d

we have d(νn, pω(x)) ≤ d(νn, xV ′) < ε.

Lemma 7. With the above notations, any weak limit ν = νa,kε,γ of (νn)n∈Iε,γ ,
when n ∈ Iε,γ goes to infinity, is ε-close to pω(x) and satisfies

h(ν) ≥ a− 2γ.

We postpone the proof of Lemma 7. To conclude the proof of Proposition

9 (admitting Lemma 7) we consider a weak-limit µ of νa,kε,γ when ε and γ both
go to zero. Clearly µ ∈ pω(x) and by upper semicontinuity of the metric
entropy we get h(µ) ≥ a. �

Proof of Lemma 7. Let α be the scale given by the Reparametrization Lemma
with respect to γ, k and a. We consider a partition P of M with diame-
ter less than α. By standard arguments we may assume the boundary of
P has zero ν-measure ; in particular the static entropy µ 7→ Hµ(Pm) is a
continuous function for any m at ν. By Lemma 4

∀m, 1

m
Hνn(Pm) ≥ 1

n
(Hµn(Pn)− 3m log ]P ) .

By taking the limit when n ∈ Iε,γ goes to infinity we get

1

m
Hν(Pm) ≥ lim inf

n∈Iε,γ

1

n
Hµn(Pn).

Let Pny being the element of the partition Pn containing y ∈ M . Then we
have

Hµn(Pn) =

∫
− logµn(Pny )dµn(y).

We apply the Reparametrization Lemma at a given point y to a C∞ map
σ : [0, 1]k →M parametrizing the leaf L. By taking the foliation box U small
enough we can assume ‖dσ‖ ≤ 1 and Λkdtσ 6= 0 for all t ∈ [0, 1]k. For n large

enough we let θ be the resulting reparametrizations. The set Pny ∩BV ′
n (x) ⊂

B(y, n, α)∩BV ′
n (x) is covered by the images of the θ’s. The Lebesgue measure

of each fn ◦σ ◦θ is bounded from above by a universal constant C according
to the second item of the Reparametrization Lemma. From the first item and
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the third item we get ‖Λkdθ(t)(fn ◦σ)‖ ≥ ‖Λkdθ(t)σ‖ena/2 for any t ∈ [0, 1]k.
Together with the upperbound on the number of reparametrizations given
in the last item we have for n large enough (independently of y ∈M) :

Leb
L

(Pny ∩BV ′
n (x)) ≤

∑
θ

Leb((σ ◦ θ)([0, 1k])),

≤
∑
θ

∫
[0,1]k

‖Λkdθ(t)σ‖‖Λkdtθ‖ dt,

≤
∑
θ

2e−na
∫

[0,1]k
‖Λkdθ(t)(fn ◦ σ)‖‖Λkdtθ‖ dt,

≤
∑
θ

2e−na Leb((fn ◦ σ ◦ θ)([0, 1k])),

≤ 2Ce−na]{θ},

Leb
L

(Pny ∩BV ′
n (x)) ≤ 2Ce−na × eγn.

But for n ∈ Iε,γ we have also LebL(BV ′
n (x)) ≥ e−nγ so that we finally get

for large enough n ∈ Iε,γ and for all y ∈M

µn(Pny ) ≤ 2Ce−na × e2γn,

Hµn(Pn) ≥ (a− 2γ)n− log(2C)

and for all m

1

m
Hν(Pm) ≥ lim inf

n∈Iε,γ

1

n
Hµn(Pn) ≥ a− 2γ.

By taking the limit in m we conclude

h(ν) ≥ a− 2γ.

�

Appendix A. Counter-example for Cr interval maps for any
finite r

For any positive integer r we give an example of a Cr (but not Cr+1)
interval map h : [0, 3/2] 	 such that for x in a positive Lebesgue measure
set the following properties hold:

(1) the empirical measures (µxn)n are converging to the Dirac measure at
a fixed point (therefore with zero entropy),

(2) the Lyapunov exponent at x satisfies χ(x) = log ‖h′‖∞
r > 0.
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Consequently the Main Theorem does not hold true in finite smoothness.

Step 1: Let λ > 1. We first consider a Cr (even C∞) interval map f :
[0, 3/2] 	 with the following properties

• f(0) = f(1) = 0,

• f has a tangency of order r at 1, i.e. f (k)(1) = 0 for k = 1, ..., r,
• f is affine with a slope equal to λ = ‖f ′‖∞ on the interval [0, 1/λ].

Step 2: After a small C∞ perturbation of f around 1 we may build a new

map g such that for some n0 and n ≥ n0, gk(1 − 1/n) lies in [0, 1/λ] for
k = 1, ..., rn − 1 and gr

n
(1 − 1/n) = 1 − 1/n + 1. Indeed these conditions

require g(1−1/n) = (1−1/n+1)λ−r
n+1 = o(1/nr), so that one can choose g

arbitrarily C∞ closed to f by taking n0 large enough. For the interval map
g, the empirical measures at 1− 1/n are converging to the Dirac measure at
the fixed point 0. We may also assume g is constant on Jn := [1− 1/n, 1−
1/n− 1/2n2] for n ≥ n0.

0 1

1

3/21/ Jn n+1
J

.  
.  

.  
.  

.  
.

Figure 1: The graph of g in red. The arrows and points in blue represent
the orbit of 1− 1/n ∈ Jn.

Step 3: We lastly modify g on Jn, n ≥ n0 such that the resulting map h
satisfies the desired properties. Let us first introduce an auxiliary family of
functions (fp)p∈N. For any p we define fp as the tent map x 7→ max(x, 1−x)
on [1/p, 1/2 − 1/p] ∪ [1/2 + 1/p, 1 − 1/p]. We extend it into a Cr smooth
interval map in such a way fp vanishes and admits a tangency of order r at
the points 0, 1/2 and 1. Finally we extend fp periodically on the whole real
axis. The intervals [1/p, 1/2− 1/p] +k and [1/2 + 1/p, 1− 1/p] +k for k ∈ Z
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are called the affine branches of fp. Observe that the Cr norm§ of fp may
be chosen of order pr. Then we let h be x 7→ αnfn2

(
(x− 1 + 1/n)2n2Nn

)
+

g(1− 1/n) on Jn where αn ∈ R+ and Nn ∈ N are chosen such that

• for each affine branch In in Jn,

hk(In) ⊂ [0, 1/λ] for k = 1, ..., rn − 1

and
hr

n
(In) = Jn+1,

• the Cr norm of h on Jn goes to zero with n.

The first and second conditions are respectively fulfilled whenever

λr
n−1 × αn(1/2− 2/n2) = 1/2(n+ 1)2

and

max
k=1,...,r

‖f (k)
n2 ‖∞ × αn × (2n2Nn)r ∼ n2r × αn × (2n2Nn)r = 1/n.

n n+1J J

In

Figure 2: The graph of h on Jn in red. The arrows and intervals in
blue represent the image Jn+1 of an affine branch In under hr

n

.

Conclusion: Let En =
⋃
In
In be the union of affine branches in Jn and let

E = En0∩h−r
n0En0+1∩h−r

n0−rn0+1
En0+2∩ ... be the subset of points in Jn0

visiting successively the sets En, n ≥ n0. Clearly E is contained in the basin
of the Dirac measure at 0. To conclude it remains to see that E has positive
Lebesgue measure and that χ(x) ≥ log λ

r for any x in E. The set E is an

affine dynamically defined Cantor set where we remove a proportion of 4/n2

at the nth step. Therefore Leb(E) = Leb(En0)
∏
n>n0

(1−4/n2) > 0. Finally

as log |h′| is equal on In to log(αn4n2Nn) ∼ r−1
r logαn ∼ −rn−1(r−1) log λ,

the Lyapunov exponent at any x ∈ E is given by

χ(x) = lim sup
p

1

p
log |(hp)′(x)|,

= log λ lim
q

∑
q≥n≥n0

(
rn − rn−1(r − 1)

)∑
n≥n0

rn
,

=
log λ

r
.

§The Cr norm of a Cr smooth interval map f is the maximum over k = 0, ..., r of the supremum
norms ‖f (k)‖∞.
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Observe that any point in E is not recurrent.

Appendix B. Essential range of x 7→ pω(x)

We recall here the definition of the essential range of a Borel map with re-
spect to a Borel measure. Finally we relate the set of physical-like measures
of a topological system (M,f) with the essential range of M 3 x 7→ pω(x).

We consider two metric spaces X and Y with Y separable. Let m be a
Borel measure on X and φ : X → Y be a Borel map.

Definition 1. With the above notations the essential range Imm(φ) of
φ with respect to m is the complement of {y ∈ Y, ∃U open with y ∈
U and m(φ−1U) = 0}.

The set Imm(φ) is a closed subset of Y and for m-almost every x the
point φ(x) belongs to Imm(φ). Moreover it is the smallest set satisfying
these properties.

Lemma 8. Let (M,f) be a topological system. The map pω : x 7→ pω(x)
from M to KM(M) is Borel.

Proof. As the set KM(M) is separable, it is enough to show pω−1(B) is a
Borel subset of M for any closed ball B of KM(M). Let B be the closed ball
of radius ε centered at K ∈ KM(M), i.e. the set of compact subsets K ′ of M
with K ′ ⊂ Kε and K ⊂ K ′ε where Kε and K ′ε denote respectively the closed
ε-neighborhoods of K and K ′. Firstly observe that {x ∈M, pω(x) ⊂ Kε} is
closed. Then for a fixed sequence (kn)n∈N dense inK the following properties
are equivalent :

K ⊂ (pω(x))ε,

⇔ d(kn, pω(x)) ≤ ε for all n,

⇔ lim infp d(kn, µ
p
x) < ε′ for all n and Q 3 ε′ > ε.

The fonctions x 7→ d(kn, µ
p
x) being continous we conclude that pω−1(B) is a

Borel set. �

Lemma 9. The set PL(m) of physical-like measures is the union of all
K ∈ Imm(pω).

Proof. Firstly, the set Imm(pω) being a compact subset of KM(M), the set⋃
K∈Imm(pω)K is a compact subset of M . Therefore, from the definitions we

get PL(m) ⊂
⋃
K∈Imm(pω)K. We argue by contradiction to prove the con-

verse inclusion. Assume there is K ∈ Imm(pω) such that K is not contained
in PL(m). Then this also holds for any K ′ close enough to K. Therefore
there exists an open neighborhood U of K such that pω−1(U) has positive
m-measure and for all x in this set pω(x) is not contained in PL(m). It is
impossible by definition of PL(m). �
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