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For a given metrizable space X we study continuity properties of the entropy as function
not only of the measure but also of the dynamical system on X. We introduce the notion of
robust tail entropy, which implies upper semicontinuity of the topological entropy but also
stability of measures of maximal entropy (when the topological entropy is continuous). This
gives, inter alia, simple proofs of results of Misiurewicz and Raith for multimodal interval
maps. We also consider fibered entropy structures which allow us to investigate the symbolic
extensions of (smooth) skew-product systems.
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1. Introduction

Downarowicz [9] has introduced a master entropy invariant, called entropy structure,
which recovers all previously known entropy quantities. An entropy structure is a non-
decreasing sequence of nonnegative functions on the set of Borel invariant probability
measures of a given dynamical system, which is converging pointwisely to the measure
theoretical entropy. The convergence of this sequence reflects how entropy appears
at smaller and smaller scales. In particular the default of uniform convergence of an
entropy structure is known to be the tail entropy introduced by Misiurewicz to bound
from above the default of upper semicontinuity of the measure theoretical entropy [18].
Also the topological symbolic extension entropy, which is the infimum of the topological
entropy of all symbolic extensions of the system (topological extensions which are
subshifts with a finite alphabet), is characterized by the entropy structure [1].

In this short note we introduce the concept of upper semicontinuous entropy structure
of a compact metrizable space X. It is a sequence of functions defined at any Borel
probability measure, which is invariant for some continuous dynamics on X, and upper
semicontinuous on this set. Moreover its restriction to the set of invariant measures of any
given system on X defines an entropy structure of this system. This upper semicontinuous
entropy structure allows us to analyse entropy of general families of dynamical systems.
We derive from it a notion of robust asymptotic h-expansiveness, which implies upper
semicontinuity of the topological entropy and of the set of measures of maximal entropy
when the topological entropy is also (lower semi-) continuous. We also define a fibered
Newhouse local entropy to study the symbolic extensions of a skew-product.

Using this general framework we recover some known properties of entropy in the
context of multimodal interval maps and of C∞ smooth maps on a manifold. We also
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deduce some new results in the theory of symbolic extensions : any skew-product of Cr

interval maps with r > 1 have symbolic extensions. Also on any manifold any compact
family of C∞ maps may be encoded using a unique subshift by preserving the entropy
of invariant measures.

2. Upper semicontinuous entropy structure

In the whole paper X will denote a compact metrizable space. We consider the
topological space C(X) of continuous dynamical systems, T : X → X, with the
usual C0 topology. The set M(X) of Borel probability measures on X is endowed
with the weak ∗-topology (then M(X) is compact). For any T ∈ C(X) we let
M(X,T ) be the closed subset of M(X) of T -invariant measures. We also consider the
closed subsetM∗C(X) ofM(X)×C(X) given byM∗C(X) := {(µ, T ), µ ∈M(X,T )}.

For (µ, T ) ∈ M ∗ C(X), the Kolmogorov-Sinai entropy h(µ, T ) of (µ, T ) is the supre-
mum, over all finite Borel partitions P , of hP (µ, T ) := infn

1
nHµ(Pn), where Pn is the

joined partition Pn =
∨n−1
k=0 T

−kP and Hµ(Pn) :=
∑

A∈Pn −µ(A) logµ(A). When (Pk)k
is a refining sequence of partitions (i.e. Pk+1 > Pk for all k) whose diameter goes to
zero then the functions hPk is converging pointwisely to h on M ∗ C(X). Recall also
that for l > k we have (hPl − hPk)(µ, T ) = hPl|Pk(µ, T ) := infn

1
nHµ(Pnl |Pnk ), with

Hµ(Pnl |Pnk ) =
∑

A∈Pnk µ(A)HµA(Pnl ) and µA = µ(A∩.)
µ(A) for any (µ, T ) ∈ M ∗ C(X) (see

[24]).
The sequence (hPk)k is in general not an entropy structure [9] : it does not reflect

correctly the topological properties of entropy, e.g. it does not allow to recover the
topological tail entropy and symbolic extension entropy.

If X is zero-dimensional and (Pk)k are clopen partitions, then (hPk)k defines an entropy
structure for any T ∈ C(X) when restricted to M(X,T ). Moreover hPl − hPk is upper
semicontinuous onM(X,T ) for any l > k. In fact hPl−hPk is upper semicontinuous on the
whole setM∗C(X). Indeed, for any n and k, for any A0, ..., An−1 ∈ Pk and for any (µ, T ),
we have lim(ν,S)→(µ,T ) ν(A0∩ ...∩S−(n−1)An−1) = µ(A0∩ ...∩T−(n−1)An−1) : for S close

enough to T the following equality holds A0∩ ...∩S−(n−1)An−1 = A0∩ ...∩T−(n−1)An−1
and then as this last set is clopen the function µ 7→ µ(A0 ∩ ... ∩ T−(n−1)An−1) is
continuous on M(X). Consequently the function hPl − hPk = infn

1
nH.(P

n
l |Pnk ) is upper

semicontinuous on M∗ C(X) as an infimum of continuous functions.

Definition 2.1: A nondecreasing sequence of nonnegative functions (hk)k onM∗C(X)
is called an upper semicontinuous entropy structure of X, when the restriction of (hk)k
to M(X,T ) defines an entropy structure for any T ∈ C(X) and when moreover hl − hk
are upper semicontinuous for any l > k.

Recall a topological extension is principal when it preserves the entropy of measures.
It is known that any topological system admits a principal zero-dimensional extension
[1, 15],[11]. For a general topological system (Z,R) an entropy structure (gl)l is a nonde-
creasing sequence of nonnegative functions converging pointwisely to the measure theo-
retical entropy, such that for any principal zero dimensional extension π : (X,T )→ (Z,R)
the lifted functions (gl(π.))l satisfies limk,l→+∞ supµ∈M(X,T ) |gl(π.)− hPk |(µ) = 0, where
(Pk)k is some refining sequence of clopen partitions of X whose diameter goes to zero
as above.
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Using the entropy with respect to a family of continous functions introduced in [9] we
prove now that upper semicontinuous entropy structures always exist.

Proposition 2.2: Any compact metrizable space X admits an upper semicontinuous
entropy structure.

We first recall the definition of the entropy by Downarowicz with respect to a family
of continous functions. For a continuous map f : X → [0, 1] we let Af be the partition
of X × [0, 1] given by the three disjoint subsets {(x, t), f(x) > t}, {(x, t), f(x) < t} and
{(x, t), f(x) = t}. Then for any finite family F of such maps, we let AF be the joined
partition

∨
f∈F Af . The entropy hF (µ, T ) of (µ, T ) ∈ M ∗ C(X) with respect to F is

then defined as the measure theoretical entropy of the product of µ with the Lebesgue
measure λ of the unit interval for the product of T with the identity map Id[0,1] of the
interval with respect to the partition AF :

hF (µ, T ) := hAF (µ× λ, T × Id[0,1]).

By choosing suitable partitions of unity one may fix a nondecreasing sequence of finite
families (Fk)k such that diameter of the partitions (AFk)k of X × [0, 1] goes to zero
when k goes to infinity. In particular the entropy h is the nondecreasing pointwise limit
of (hk)k = (hFk)k.

In [9] it is proved that the restriction of (hk)k to M(X,T ) is an entropy structure
for any T ∈ C(X). As the sequence (Fk)k is nondecreasing we may write the difference
hl − hk as

(hl − hk)(µ, T ) := inf
n

1

n
Hµ×λ(AnFl |A

n
Fk).

Thus the upper semicontinuity of hl − hk follows from the following lemma :

Lemma 2.3: For any n, k and any B0, ..., Bn−1 ∈ AFk , the following map is continuous:

M∗ C(X)→ [0, 1],

(µ, T ) 7→ (µ× λ)
(
B0 ∩ T−1B1 ∩ ... ∩ T−(n−1)Bn−1

)
.

Proof. Fix (µ, T ) ∈ M ∗ C(X). The iterated partition (AFk)
n is just the partition AFnk

where Fnk = {f ◦ T k, 0 ≤ k ≤ n − 1 and f ∈ Fk}. Thus the boundary of (AFk)
n is

contained in the graphs of the functions f, f ◦T, ..., f ◦Tn−1 with f ∈ Fk, which have zero
(µ×λ)-measure. In particular there is a closed neighborhood O of B0∩ ...∩T−(n−1)Bn−1
with almost the same (µ×λ)-measure. Now for any S which is C0-close enough to T we
have B0 ∩ ... ∩ S−(n−1)Bn−1 ⊂ O. Finally we get

lim sup
(ν,S)→(µ,T )

(ν × λ)(B0 ∩ ... ∩ S−(n−1)Bn−1) ≤ lim sup
ν→µ

(ν × λ)(O),

≤ (µ× λ)(O) ' (µ× λ)(B0 ∩ ... ∩ T−(n−1)Bn−1).

This proves the upper semicontinuity. But the complementary set of B0 ∩ T−1B1 ∩ ... ∩
T−(n−1)Bn−1 may be written as a finite disjoint union of intersections of this form, so
that in fact we have proved the continuity.

For any compact subset D of C(X), we may consider the skew-product system SD on
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X × D defined by SD(x, T ) = (Tx, T ). Then, when considering the functions of Fk as
functions on X×D, the sequence (hFk)k defines an entropy structure onM(SD, X×D)
of SD, but also an entropy structure of T , when restricted to M(X,T ). Moreover these
functions have upper semicontinuous differences. In the next section we investigate the
entropy structure of general skew-product systems.

3. Fibered Entropy structure for skew-products

We consider now a skew-product continuous map S on X × Y (with Y another com-
pact metrizable space) over T , i.e. there exists a continuous family (Sx)x∈X of C(Y )
such that S(x, y) = (T (x), Sx(y)) for any (x, y) ∈ X × Y . Let (FXk )k and (FYk )k be
nondecreasing sequences of functions, as defined above, for the compact sets X and Y
respectively. We also denote by (hXk )k = (hFXk )k and (hYk )k = (hFYk )k the associated
entropy structures. We then consider for any k the family Gk := {f × g : X × Y →
[0, 1]2, (f, g) ∈ FXk ×FYk } and the associated partition AGk of (X × [0, 1])× (Y × [0, 1])
given by AGk =

(
AFXk × (Y × [0, 1])

)
∨
(
(X × [0, 1])×AFYk

)
. Finally we let for any

µ ∈M(X × Y, S) :

hk(µ, S) := hAGk (µ× λ2, S × Id2[0,1]).

Again any element of AnGk has boundaries with zero measure for µ × λ2. It follows then
from Lemma 7.1.2 of [9] that (hk)k defines an entropy structure of (X × Y, S). Let π be
the factor map from X × Y to X and let µ :=

∫
µxdπµ(x) be the desintegration of µ

with respect to π (see [10] p.35 for the notion of disintegration of a measure). For any
(t, s) ∈ [0, 1]2 and k ∈ N we let AtFXk

be the partition of AFXk ∩ (X × {t}) of X×{t} ' X
and AG(t,s)

k
be the partition of AGk ∩ (X × Y × {(t, s)}) of X × Y × {(t, s)} ' X × Y .

Then we have for all S-invariant measure µ, by Abramov-Rokhlin formula (see Theorem
2.6.3 of [10]),

hk(µ, S) = hXk (πµ, T ) + hAGk |AFXk ×Y×[0,1]

(
µ× λ2, S × Id2[0,1]

)
,

= hXk (πµ, T ) +

∫
[0,1]2

hA(t,s)
Gk
|At
FX
k

×Y (µ, S) dλ2(s, t).

We have for any (t, s) ∈ [0, 1]2 with BX the Borel σ-algebra of X and h.|π−1BX the

conditional entropy with respect to π−1BX (see [10]) :

hA(t,s)
Gk
|At
FX
k

×Y (µ, S) ≥ hA(t,s)
Gk
|π−1BX (µ, S).

and by applying again Abramov-Rokhlin formula

hA(t,s)
Gk
|π−1BX (µ, S) = lim

n

1

n

∫
Hµx

(
(A

(t,s)
Gk )n

)
dπµ(x).

Finally recall that if we let hfib(µ, S) = supP hP |π−1BX (µ, S) where the supremum is
taken over all finite Borel partitions P of X × Y then we have

h(µ, S) = h(πµ, T ) + hfib(µ, S). (1)
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By analogy with the theory of entropy structure of Downarowicz the sequence

(hfibk )k :=
(
hAGk |π−1BX

)
k

=
(∫

[0,1]2 hA(t,s)
Gk
|π−1BXdλ

2(t, s)
)
k

is said to be a fibered en-

tropy structure. It converges pointwisely to hfib and reflects somehow the emergence of
entropy in the fibers at arbitrarily small scales.

We will now relate this fibered entropy structure with an analogy of Newhouse’s
entropy (see [22],[9]) for fibered entropy, which is convenient to estimate for smooth
dynamical systems. As Tµx = µTx for πµ-almost all x we get in fact by subaddi-

tive Kingsman’s theorem that limn
1
nHµx((A

(t,s)
Gk )n) exists for πµ-almost all x and

limn
1
n

∫
Hµx((A

(t,s)
Gk )n)dπµ(x) =

∫
limn

1
nHµx((A

(t,s)
Gk )n)dπµ(x).

We define now the ”fibered Newhouse local entropy” of an ergodic S-invariant measure
µ. For δ > 0 and n ∈ N, a set E ⊂ X×Y is said (n, δ)-separated when for any x 6= y in E
there is 0 ≤ k < n with d(Skx, Sky) ≥ ε. Then for x ∈ X, y ∈ Y , ε > 0 and Fx ⊂ π−1(x)
a Borel set, we let:

Hx(n, δ|y, Fx, ε) := log max
{
]E : E ⊂ Fx ∩

n−1⋂
k=0

S−k
(
B(Sk(x, y), ε)

)
and E is a (n, δ)-separated set

}
,

Hx(n, δ|Fx, ε) := sup
y∈Fx

Hx(n, δ|y, Fx, ε),

hx(δ|Fx, ε) := lim sup
n→+∞

1

n
Hx(n, δ|Fx, ε),

hx(Y |Fx, ε) := lim
δ→0

hx(δ|Fx, ε),

For any Borel set F ⊂ X ×Y we denote by Fx the intersection Fx = F ∩π−1(x). Finally
we let

hfibNew(µ, S, ε) := lim
α→1

inf
F, µ(F )>α

∫
X
hx(Y |Fx, ε)dπµ(x).

For non ergodic measures ν, we consider the harmonic extension, i.e. with ν =∫
µdMν(µ) being the ergodic decomposition of ν, we let :

hfibNew(ν, S, ε) =

∫
hfibNew(µ, S, ε)dMν(µ).

Lemma 3.1: For any k there is l such that for all µ ∈ M(X × Y, S), with εk being the
diameter of AGk ∩X × Y × [0, 1]2,(

hfib − hfibk
)

(µ, S) ≤ hfibNew(µ, S, εk)

This lemma is the fibered version of Theorem 1.1 in [22] and the proof follows the same
(standard) lines.

Proof. It is enough to consider ergodic measures µ as the left and right members are
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harmonic. In the definition of hfib one may consider partitions P with boundary of null
µ-measure. Let γ > 0. Let P be such a partition with hfib(µ, S) ' hP |π−1BX (µ, S). We fix

a set F with µ(F ) > α > 1− γ
log ]P . Let δ′ > 0 be such that µ(∂δ

′
P ) < γ

log ]P where ∂δ
′
P

denotes the closed δ′-neighborhood of ∂P . Let also δ = 1
2 minA 6=B∈P d(A,B \ ∂δ′P ) > 0.

By the ergodic theorem
(
]{0≤k≤n, Skz∈∂δ′P}

n

)
n

goes to µ(∂δ
′
P ) for µ-almost every z. Now

when Skz /∈ ∂δ′P there exists a unique element Ak of P such that Sky ∈ Ak for all y in
the dynamical ball Bn(S, z, δ) :=

⋂
0≤l<n S

−lB(Slz, δ) with n > k. Consequently there is

a subset F ′ of F with µ-measure larger than α, such that for any z ∈ F ′ the dynamical
ball Bn(S, z, δ) intersects only eγn elements of Pn for large n. Now one only needs to
show that for all x, t, s:

lim sup
n

1

n
Hµx

(
Pn|(A(t,s)

Gk )n
)
≤ hx(δ|F ′x, εk) + γ + µx(X \ F ′) log ]P. (2)

Indeed we obtain then by integrating over X × [0, 1]2 :

hfib(µ, S)− hAGk |π−1BX (µ, S) .
∫
X
hx(Y |F ′x, εk)dπµ(x) + 2γ.

By taking the infimum over F and then the limit when α goes to one we conclude that

hfib(µ)− h(µ,AGk |π−1BX) ≤ hfibNew(µ, εk).
We go back to the proof of (2), which follows from the following inequalities, by letting

Q be the partition Q = {F ′, X \ F ′}:

Hµx

(
Pn|(A(t,s)

Gk )n
)
≤ Hµx(Q) +Hµx

(
Pn|(A(t,s)

Gk )n ∨Q
)
,

≤ log 2 + µx(X \ F ′)H
µ
X\F ′
x

(
Pn|(A(t,s)

Gk )n
)

+ µx(F ′)HµF ′x

(
Pn|(A(t,s)

Gk )n
)
,

≤ log 2 + µx(X \ F ′)n log ]P + sup
A∈(A(t,s)

Gk
)n

log ]
{
B ∈ Pn, B ∩ F ′x 6= ∅ and B ⊂ A

}
.

Then if E is a (n, δ) separated set with maximal cardinality in F ′x then the balls
Bn(S, z, δ) for z ∈ E are covering F ′x. Therefore we have from the choice of F ′:

Hµx

(
Pn|(A(t,s)

Gk )n
)
≤ log 2 + µx(X \ F ′)n log ]P + γn+Hx(n, δ|F ′x, εk).

Finally by taking the limsup in n we get

lim sup
n

1

n
Hµx

(
Pn|(A(t,s)

Gk )n
)
≤ hx(Y |F ′x, εk) + γ + µx(X \ F ′) log ]P.

An affine upper semicontinuous map E : M(X,T ) → R is called a superenvelope of

(X,T ) if and only if limk Ẽ − hk = E − h, where f̃ denotes the upper semicontinuous
envelope of f , that is f̃(µ) = lim supν→µ, ν∈M(X,T ) f(ν). We define fibered superenvelope

as affine upper semicontinuous maps E :M(X×Y, S)→ R with limk
˜

E − hfibk = E−hfib.

Corollary 3.2: When EX is a superenvelope of (X,T ) and Efib is a fibered superenve-
lope then the sum EX + Efib defines a superenvelope of the skew-product (X × Y, S).
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Proof. This follows from the following series of inequalities :

EX + Efib − hk ≤ EX + Efib − hXk − h
fib
k ,

˜EX + Efib − hk ≤ ˜EX − hXk +
˜

Efib − hfibk ,

lim
k

˜EX + Efib − hk ≤ EX − hX + Efib − hfib,

≤ EX + Efib − h.

4. Robust tail entropy

We first recall the tail entropy of a topological system T ∈ C(X). Fix ε > 0. Given
x ∈ X, n ∈ N, denote the n-step dynamical ball Bn(T, x, ε) consisting of all such points
y ∈ X that

d(T iy, T ix) < ε, i = 0, 1, ..., n− 1.

Following Bowen we define the ε-tail entropy h∗(T, ε) as follows :

h∗(T, δ, ε) = lim sup
n→∞

1

n
log sup

x∈X
rn(T,Bn(T, x, ε), δ),

where rn(T,G, δ) denotes the maximal cardinality of a (n, δ)-separated set inside a subset
G of X,

h∗(T, ε) = lim
δ→0

h∗(T, δ, ε).

The tail entropy h∗(T ) of T is then given by

h∗(T ) = lim
ε→0

h∗(T, ε).

Let C ⊂ C(X) be a topological space of continuous dynamical systems on X such that
the topology on C is stronger than the C0 topology. We introduce a new quantity, h∗C(T )
for T ∈ C, which estimates the tail entropy of S for S ∈ C arbitrarily close to T in the
topology of C:

h∗C(T ) = lim
ε→0

lim sup
S→T

h∗(S, ε) = lim
ε→0

inf
U

sup
S∈U

h∗(S, ε),

where the infimum holds over all C-neighborhoods U of T . As the limit in ε is also an
infimum we may invert the limit and the infimum in the above definition so that:

h∗C(T ) = inf
U

lim
ε→0

sup
S∈U

h∗(S, ε).

Finally we define the tail entropy h∗C of C as:

h∗C = sup
T∈C

h∗C(T ).
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As the map T 7→ lim supS→T h
∗(S, ε) is upper semicontinuous on C for any ε the func-

tion T 7→ h∗C(T ) is also upper semicontinuous as an infimum of upper semicontinuous
functions. Moreover by Proposition 2.4 of [1] we can invert the supremum in T with the
limit in ε when C is compact, that is :

sup
T∈C

lim
ε→0

lim sup
S→T

h∗(S, ε) = lim
ε→0

sup
T∈C

lim sup
S→T

h∗(S, ε).

By definition the left member is just h∗C whereas in the right member the term
supT∈C lim supS→T h

∗(S, ε) is just equal to supS∈C h
∗(S, ε). Thus we have for compact

spaces C:

h∗C = lim
ε→0

sup
S∈C

h∗(S, ε).

For general topological spaces C we only get h∗C ≤ limε→0 supS∈C h
∗(S, ε). One can not

invert the limit in ε and the supremum in the right member of the above inequality,
indeed we may have h∗C > supS∈C limε→0 h

∗(S, ε) = supS∈C h
∗(S), see Remark 6.2.

We let M∗ C ⊂ M ∗ C(X) be the topological subspace of M(X) × C given by pairs
(µ, T ) with T ∈ C and µ ∈ M(X,T ). We consider an upper semicontinuous entropy
structure (hk)k on X. Finally for a function f : M ∗ C → R we let f̃ be its upper
semicontinuous envelope, i.e. f̃(µ, T ) := lim sup(ν,S)→(µ,T ) f(ν, S). We have the following
variational principles:

Proposition 4.1:

h∗C(T ) = lim
k

sup
µ∈M(X,T )

h̃− hk(µ, T ) = sup
µ∈M(X,T )

lim
k
h̃− hk(µ, T )

and

h∗C = sup
(µ,T )∈M∗C

lim
k
h̃− hk(µ, T ).

Remark 4.2: Observe that when C is compact then it follows from the tail variational
principle [9][3] and the second equality that h∗C = h∗(SC), where SC is the skew-product
map on X × C defined at the end of Section 2.

Proof. The second equality follows straightforwardly from the first one, which we prove
now. Firstly we may again invert the supremum and the limit as the limit in k is nonin-

creasing and the functions h̃− hk are upper semicontinuous on the compact setM(X,T ).
We need the following lemma.

Lemma 4.3: Let (hk)k be the upper semicontinuous entropy structure on X given in the
proof of Proposition 2.2. Then there exist two nonincreasing sequences (εk)k and (ε′k)k of
real positive numbers going to zero such that for any T ∈ C(X),(

1− 1

2k

)
h∗(T, ε′k)−

1

2k
≤ sup

µ∈M(X,T )
(h− hk)(µ, T ) ≤ h∗(T, εk).

Proof. With the notations of Section 2 we have hk(µ, T ) = hAFk (µ× λ, T × Id[0,1]). The
second inequality follows from the standard following fact whose proof is left to the
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reader (Hint: argue as in the proof of Lemma 3.1).

Fact. Let T ∈ C(X) and ε > 0 then for any finite partition P of X with diameter less
than ε and for any µ ∈M(X,T ), we have:

(h− hP )(µ) ≤ h∗(T, ε).

Indeed we have then supµ∈M(X,T )(h− hk)(µ) ≤ h∗(T × Id[0,1], εk) = h∗(T, εk) with εk
being the diameter of the partition AFk of X × [0, 1].

Let us prove now the first inequality. For any µ ∈ M(X) and k ∈ N we have
(λ × µ) (∂AFk) = 0. Thus there is ε′′k > 0 such that the closed ε′′k-neighborhood
of AFk has (λ × µ)-measure less than 1

2k log ]AFk
for any µ in M(X). Finally we

let ε′k = minA 6=B∈AFk d(A,B \ ∂ε′′kAFk). We fix now T ∈ C(X) and we will prove(
1− 1

2k/2

)
h∗(T, ε′k)−

2
2k/2 ≤ supµ∈M(X,T )(h− hk)(µ). We follow the lines of the proof of

the tail variational principle in [3]. First let δ > 0 be such that h∗(T, ε′k) ' h∗(T, δ, ε′k)
and consider then for all n a point xn ∈ X such that rn(T,Bn(T, xn, ε

′
k), δ) is max-

imal. Finally we let (ξ, ν) ∈ M(X,T )2 be a weak limit of
(

1
n

∑n−1
k=0(T kδxn , T

kµn)
)
n

with µn = 1
]En

∑
x∈En δx where En a (n, δ)-separated set in Bn(T, xn, ε

′
k) with ]En =

rn(T,Bn(T, xn, ε
′
k), δ). Let l be such that the diameter of AFl (and thus AyFl for any

y ∈ [0, 1]) is less than δ. Recall we have

(hl − hk)(ν) =

∫
[0,1]

(hAyFl
− hAyFk )(ν, T )dλ(y).

As the boundary of AyFk for all k has zero ν-boundary for almost every y, we have as in
[3] for such y

(hAyFl
− hAyFk )(ν, T ) ≥ lim sup

n

1

n
Hµn

((
AyFl

)n | (AyFk)n) ,
To conclude it is enough to check that the right member is larger than h∗(T, ε′k)−2/2k/2

for y in a set of measure larger than 1− 1
2k/2 . It follows from the choice of ε′′k that for any

y in a set E with λ(E) > 1− 1
2k/2 we have ξ(∂ε

′′
kAyFk) <

1
2k/2 log ]AFk

. We may also assume(
1
n

∑n−1
k=0 T

kδxn

) (
∂ε
′′
kAyFk

)
< 1

2k/2 log ]AFk
for large enough n with y in a set E′ ⊂ E

independent of n with λ(E′) > 1 − 1
2k/2 . In particular by arguing as in the proof of

Lemma 3.1 the dynamical ball Bn(T, xn, ε
′
k) intersects only en/2

k/2

elements of
(
AyFk

)n
for any y ∈ E′. Let By,nk be the subcollection of

(
AyFk

)n
satisfying this property. We

have µn(
⋃
A∈By,nk A) = 1 because µn is supported on Bn(T, xn, ε

′
k) and therefore with

µAn = µn(A∩.)
µn(A)

lim sup
n

1

n
Hµn

((
AyFl

)n | (AyFk)n) = lim sup
n

1

n

∑
A∈(AyFk)

n

µn(A)HµAn

((
AyFl

)n)
,

≥ lim sup
n

1

n

∑
A∈By,nk , µn(A)>e−2n/2k/2

µn(A)HµAn

((
AyFl

)n)
.

9
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Then for any A ∈ By,nk with µn(A) > e−2n/2
k/2

we have

HµAn

((
AyFl

)n) ≥ − 2n

2k/2
+ log ]En = − 2n

2k/2
+ log rn(T,Bn(T, xn, ε

′
k), δ).

We conclude that

lim sup
n

1

n
Hµn

((
AyFl

)n | (AyFk)n) ≥ lim sup
n

(
− 2

2k/2
+

1

n
log rn(T,Bn(T, xn, ε

′
k), δ)

) ∑
A, µn(A)>e−2n/2k/2

µn(A),

≥ lim sup
n

(
− 2

2k/2
+

1

n
log rn(T,Bn(T, xn, ε

′
k), δ)

)
(1− e−n/2k/2),

≥ − 2

2k/2
+ h∗(T, ε′k).

We finish now the proof of Proposition 4.1. Fix a neighborhood U of T in C. According
to the above Lemma, we have

sup
µ∈M(X,T )

h̃− hk(µ, T ) ≤ sup
(ν,S), S∈U

(h− hk)(ν, S),

≤ sup
S∈U

h∗(S, εk).

Thus by taking the infimum over U and then the limit in k we conclude that

lim
k

sup
µ∈M(X,T )

h̃− hk(µ, T ) ≤ h∗C(T ).

For the converse inequality, we consider for any S ∈ C a measure νS ∈ M(X,S) such
that (h − hk)(νS , S) ≥ (1 − 1

2k )h∗(S, ε′k) −
1
2k . Now if µT ∈ M(X,T ) is a weak limit of

(νS)S when S goes to T in C, then

sup
µ∈M(X,T )

h̃− hk(µ, T ) ≥ h̃− hk(µT , T ),

≥ lim sup
S→T

(h− hk)(νS , S),

≥ inf
U

sup
S∈U

(
1− 1

2k

)
h∗(S, ε′k)−

1

2k
.

We conclude the proof of the converse inequality by taking the limit in k.

Definition 4.4: A dynamical system T on X is said to be

• h-expansive if h∗(T, ε) = 0 for some ε > 0;
• asymptotically h-expansive when h∗(T ) = 0;
• C-stably asymptpotically h-expansive when T ∈ C and h∗C(T ) = 0.

The family C of dynamical systems on X is said to be asymptpotically h-expansive when
h∗C = 0.

10
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5. Upper semicontinuity of entropy and continuity of measure of maximal
entropy

Asymptotic h-expansiveness was introduced by Misiurewicz in [18]. One important conse-
quence is the upper semicontinuity of the measure theoretical entropy for a given system.

Theorem 5.1: (Misiurewicz) Let (X,T ) be an asymptotically h-expansive system. Then
the measure theoretical entropy h(., T ) : M(X,T ) → R is an upper semicontinuous
function, i.e.

lim sup
ν→µ

h(ν, T ) ≤ h(µ, T ).

Let C be as in the above section. For a C-stably asymptotic h-expansive we obtain the
following generalization.

Theorem 5.2: Let T be C-stably asymptpotically h-expansive. Then the measure theo-
retical entropy h :M∗ C → R is upper semicontinuous at (µ, T ), i.e.

lim sup
(ν,S)→(µ,T ), (ν,S)∈M∗C

h(ν, S) ≤ h(µ, T ).

Proof. By the variational principle (Proposition 4.1) and upper semicontinuity of hk on
M∗C(X) ⊃M∗ C we have using the previous notation˜ for the upper semicontinuous
envelope :

h̃(µ, T ) ≤ h̃k(µ, T ) + h̃− hk(µ, T ),

≤ hk(µ, T ) + sup
µ∈M(X,T )

h̃− hk(µ, T ).

By taking the limit in k we conclude the proof:

h̃(µ, T ) ≤ h(µ, T ) + h∗C(T ) = h(µ, T ).

Observe that Theorem 5.1 follows from the previous theorem by taking C = {T}. One
may also deduce upper semicontinuity of the topological entropy.

Corollary 5.3: Let T be C-stably asymptpotically h-expansive. Then

lim sup

S
C−→T

htop(S) ≤ htop(T ).

Let T be an asymptotically h-expansive system on X. Then the set Mmax(T ) = {µ ∈
M(X,T ), h(µ, T ) = htop(T )} is a non-empty compact convex subset of M(X,T ) ⊂
M(X). We will see that if C is asymptotically h-expansive and the topological entropy
is (lower semi-) continuous on C then T 7→ Mmax(T ) is upper semicontinuous on C for
the Hausdorff topology on M(X).

Corollary 5.4: Assume that T is C-stably asymptpotically h-expansive and that the
topological entropy on C is lower semi-continuous at T ∈ C. Then any weak limit of
µS ∈Mmax(S) when S goes to T belongs to Mmax(T ).

11
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Proof. Let µ = limS µS be such a weak limit. We have by Theorem 5.2 and lower semi-
continuity of the topological entropy :

h(µ, T ) ≥ lim sup
S→T

h(µS , S);

≥ lim sup
S→T

htop(S);

≥ htop(T ).

Corollary 5.5: Assume moreover that T has a unique measure of maximal entropy µT
then any µS ∈Mmax(S) is converging to µ when S goes to T .

Note that all statements of this section may be applied to topological, measure theo-
retical pressure and equilibrium states associated to a continuous potential.

6. Applications

We illustrate now our abstract theory with two examples : multimodal interval maps and
Cr-smooth maps with r > 1. There are other contexts, that we will not develop here,
where the above abstract results may be applied : e.g. piecewise affine maps [7], C1 maps
far from homoclinic tangencies [13],...

6.1. Multimodal maps of the interval

LetMr
k([0, 1]), with r = 0 or 1, be the set of Cr interval maps f , which admits a partition

of [0, 1] into k intervals such that f is weakly monotone on each element of this partition.
We say x ∈ [0, 1] is a turning point of an interval map f when there exist 0 ≤ a < b ≤

x ≤ c < d ≤ 1 such that f is constant on [b, c] and strictly monotone both on [a, b] and
[c, d] but in the opposite sense.

Theorem 6.1: (Misiurewicz-Szlenk)[20] Let f ∈ M0
k ([0, 1]) such that the image of any

turning point is not turning. Then f is M0
k ([0, 1])-stably asymptotic h-expansive.

Proof. Let δ > 0 and let f be as above. We fix p ∈ N with log 2
p < δ. For any piecewise

monotone map g we let L(g) > 0 be the minimal distance between two turning points of
g, which are not in a common interval of constancy. As the image by f of any turning
point is not turning, the map g 7→ L(gk) is continuous at f for any k. This concludes the
proof of the theorem as for any ε < L(gp),

h∗(g, ε) ≤ 1

p
h∗(gp, ε) ≤ log 2

p
< δ.

Indeed the inequality h∗(gp, ε) ≤ log 2 follows from the fact that any dynamical ball
Bn(gp, x, ε) intersect only 2n n-monotone branches of gp and that the cardinality of any
(n, δ)-separated set lying in a n-monotone branch is less than n/δ.

Remark 6.2: It is not true that M0
k ([0, 1]) is stably asymptotic h-expansive altough any

T ∈M0
k ([0, 1]) is asymptotically h-expansive. It is enough to observe that the topological

entropy is not upper semicontinuous on M0
k ([0, 1]). For k = 2, one can for example

consider the continuous piecewise affine maps T = min(x, 1 − x) and Tn, with Tn = T

12
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outside [1/2−1/n, 1/2+1/n] and Tn be the rescaled usual 2-tent map on [1/2−1/n, 1/2+

1/n]. One easily checks that htop(Tn) = log 2 and Tn
n→+∞−−−−−→ T . However any compact

subset C of M0
k ([0, 1]), such that g 7→ L(gk) is continuous on C for any k, is asymptotically

C-expansive.

As the topological entropy is lower semicontinuous at any f ∈ M0
k ([0, 1]) we recover

according to Corollary 5.4 the following result of P. Raith [23]:

Corollary 6.3: Assume f ∈ M0
k ([0, 1]) such that the image of any turning point is not

turning. Then any weak limit of measures of maximal entropy µg of g ∈M0
k ([0, 1]), when

g goes to f , is a measure of maximal entropy of f .

For f ∈M1
k ([0, 1]), we let w(f ′, ε) be the modulus of continuity of f ′, i.e.

w(f ′, ε) := sup
|x−y|<ε

|f ′(x)− f ′(y)|.

It was proved in [4] (proof of Theorem D) that for any ε > 0 we have

h∗(f, ε) ≤ log k

| logw(f ′, ε)|
.

Consequently we have

Theorem 6.4: Any f ∈M1
k ([0, 1]) is M1

k ([0, 1])-stably asymptotic h-expansive. Morevoer
any compact subset of M1

k ([0, 1]) is asymptotically h-expansive.

By smoothing the example in the previous remark one easily checks that M1
k ([0, 1]) is

not asymptotically h-expansive. The above theorem together with Corollary 5.3 give a
new proof of the following statement due to M. Misiurewicz:

Corollary 6.5: (Misiurewicz)[21] The topological entropy is (upper) semicontinuous on
M1
k ([0, 1]).

6.2. C∞ smooth systems

Building on previous works of Yomdin and Gromov [25], Buzzi has proved that C∞ maps
on a compact smooth manifold are asymptoticlly h-expansive. In fact it follows from his
proof that:

Theorem 6.6: (Yomdin, Buzzi) Let M be a compact smooth Riemanian manifold of
dimension d and let r ∈ N. Then any bounded subset C of Cr(M) endowed with the usual
Cr topology satisfies for any T ∈ C :

h∗C(T ) ≤ dR(T )

r
,

with R(T ) := limn
1
n log+ ‖DTn‖∞. In particular any compact subset of C∞(M) is

asymptotically h-expansive.

Remark 6.7: The tail entropy may be defined for nonautonomous dynamical systems
(Tn : X → X)n by following straightforwardly the definition of Section 4 with Tn =
Tn ◦ ...T1. Then the above theorem also holds true in this context [8] (provided each Tn
lies in the Cr bounded set C).

Then one can deduce from the above theorem and Corollary 5.4 the following general

13
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result of continuity of maximal measures (which is new to our knowledge):

Corollary 6.8: Assume S is converging to T in the C∞ topology on M and that
lim infS→T htop(S) ≥ htop(T ) then any weak limit of measure of maximal entropy µS
of S is a measure of maximal entropy of T .

Remark 6.9: When it is unique the measure of maximal entropy is continuous with
T . For example the unique measure of maximal entropy µT is continuous with T in the
set of C∞ transitive interval maps or surface diffeomorphisms. Indeed the topological
entropy is lower semicontinuous in these contexts by respective results of Misiurewicz
[16] and Katok [14]. Moreover uniqueness was proved in [8] and [6].

It was proved by Boyle and the Fiebig’s [2] that any asymptoticaly h-expansive system
has a principal symbolic extension. Applying this result to our skew-product map SC for
a compact subset C of C∞(M), which is asymptotically h-expansive by Remark 4.2, we
may encode any dynamics of C in a single subshift:

Corollary 6.10: Let C be a compact subset of C∞(M), then there is a principal symbolic
extension of SC. In other words there is a subshift Y and disjoint subshifts (YT )T∈C with
Y =

⊔
T∈C YT and a continuous surjective map π : Y →M such that the restriction of π

to YT is a principal symbolic extension of T .

Using fibered entropy structures developped in Section 3 we generalize now the above
corollary to smooth skew-products.

6.3. Cr smooth systems

Boyle and Downarowicz have completely characterized the entropy in a symbolic exten-
sion. Let E :M(X,T )→ R be an affine continuous map, then recall that E is called a su-

perenvelope if and only if limk Ẽ − hk = E−h. They showed that for any symbolic exten-
sion π : (Y, S)→ (X,T ) the map hπ :M(X,T )→ R defined as hπ(µ) = supν, πν=µ h(ν)
is a superenvelope and that for any superenvelope E there is a symbolic extension π with
hπ = E.

It was proved for Cr interval maps [12] and for Cr surface diffeomorphism T

[5] with r > 1 that µ 7→ h(µ, T ) + χ+(µ,T )
r−1 = h(µ, T ) + 1

r−1
∫
χ+(x, T )dµ(x), with

χ+(x, T ) := lim supn
1
n log+ ‖DxT

n‖ the largest positive Lyapunov exponent at a point
x ∈M , is a superenvelope of (X,T ).

We consider here a skew-product map S ∈ C(X×M) over T ∈ C(X) with M a smooth
manifold, such that x 7→ Sx from X to Cr(M), with r > 1, is continuous. We let χ+

fib

be the maximal positive fibered Lyapunov exponent defined for any µ ∈ M(X ×M,S)
as χ+

fib(µ, S) =
∫
χ+
fib(x, y)dµ(x) with χ+

fib(x, y) = lim supn
1
n log+ ‖DySTn−1x ◦ ... ◦ Sx‖

at any (x, y) ∈ X ×M . By subadditivity we have χ+
fib(µ, S) = infn

∫
1
n log+ ‖DySTn−1x ◦

...◦Sx‖dµ(x, y) and when ν is ergodic, then
(
1
n log+ ‖DySTn−1x ◦ ... ◦ Sx‖

)
n

is converging

to χ+
fib(ν, S) for ν-almost all (x, y). Observe that µ 7→ χ+

fib(µ, S) is an harmonic upper

semicontinuous function on M(X ×M,S).

Theorem 6.11: Assume M = T1 is a circle. Then the function µ 7→ hfib(µ, S) +
1
r−1χ

+
fib(µ, S) is a fibered superenvelope of (X ×M,S).

The proof in [5] applies straightforwardly in this fibered context by using the quantities

hfibNew and χ+
fib. Indeed as in Remark 6.7 the proof is based on a reparametrization lemma

of dynamical balls which applies to the nonautonomous dynamical systems (ST lx)l for

14
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any x ∈ X. We give now more details.

Sketch of proof. We first recall the Reparametrization Lemma of [5] in the context of
circle maps. Let T = (Tn)n : T1 → T1 be a bounded sequence of C1 circle maps (we
endow the circle T1 with some Riemannian metric ‖.‖). For any χ > 0, γ > 0 and
C > 1, we consider the set HnT (χ, γ, C) of points of T1 whose exponential growth of the
derivative of the n-first iterations of T is almost equal to χ, i.e. with T j = Tj−1 ◦ ... ◦T0 :

HnT (χ, γ, C) :=
{
y ∈ T1 : ∀1 ≤ j ≤ n, C−1e(χ−γ)j ≤ ‖DyT

j‖ ≤ Ce(χ+γ)j
}
.

We also denote H : [1,+∞[→ R the function defined by H(t) = −1
t log(1t ) − (1 −

1
t ) log(1− 1

t ). Moreover [x] is the usual integer part of x ∈ R if x > 0 and zero if not.

Reparametrization Lemma: Let T = (Tn)n : T1 → T1 be a sequence of Cr maps
with r > 1 lying in a Cr bounded set C. There exist ε = ε(C) > 0 depending only on C
and a universal constant A = A(r) > 0 depending only on r with the following properties.

For all χ > 0, γ > 0 and C > 1, for all y ∈ T1, for all positive integers n, there
exists a family Fn of C∞ maps from [0, 1] to T1, such that we have with λ+n (y, T ) :=
1
n

∑n−1
j=0 log+ ‖DT jyTj‖ and some constant B > 0 (independent of n):

• ∀ψ ∈ Fn, ∀0 ≤ l ≤ n, ‖D(T l ◦ ψ)‖∞ ≤ 1,
• HnT (χ, γ, C) ∩ (Bn+1(T , y, ε)) ⊂

⋃
ψ∈Fn ψ([0, 1]),

• log ]Fn ≤ 1
r−1 (1 +H([λ+n (y, T )− χ] + 3)) (λ+n (y, T )− χ)n+An+B.

We sketch now the proof of Theorem 6.11. We fix a measure µ ∈ M(X × T1, S) and
we will show there is an integer kµ such that for ν close to µ we have

(
hfib − hfibkµ

)
(ν, S) .

1

r − 1

(
χ+
fib(µ, S)− χ+

fib(ν, S)
)
.

Equivalently the map µ 7→ hfib(µ, S) +
χ+
fib(µ,S)

r−1 is a fibered superenvelope. By Lemma
8.2.14 of [10] it is enough to consider ergodic measures ν. We fix an integer pµ with
χ+
fib(µ, S) ' 1

pµ

∫
log+ ‖DyST pµ−1x ◦ ... ◦ Sx‖dµ(x, y). Let ν̃ be an ergodic component

of ν under Spµ . Then by the Ergodic Theorem the sequence (λ+n (y, Tx))n, with Tx =
(STnpµ−1x ◦ ... ◦ ST (n−1)pµx)n, is converging ν̃-almost surely to

∫
log+ ‖DyST pµ−1x ◦ ... ◦

Sx‖dν̃(x, y). For any α < 1 there exists therefore a subset F̃ of X×T1 with ν̃(F̃ ) > α such
that the sequences (λ+n (y, Tx))n, and

(
1
n log+ ‖DyST (n−1)pµx ◦ ... ◦ Sx‖

)
n

are converging

uniformly in (x, y) ∈ F̃ respectively to
∫

log+ ‖DyST pµ−1x◦ ...◦Sx‖dν̃(x, y) and χ+
fib(x, y).

Then by arguing as in [5] we get by applying the Reparametrization lemma to Tx for any
x that for εµ = ε

(
(S

pµ
x )x∈X

)
:

hx(T1|F̃x, εµ) . lim
n

sup
y∈F̃x

λ+n (y, Tx)− χ+
fib(ν̃, S

pµ),

.
1

r − 1

(∫
log+ ‖DyST pµ−1x ◦ ... ◦ Sx‖dν̃(x, y)− χ+

fib(ν̃, S
pµ)

)
.

and then by integrating in x the left member with respect to πν̃ and by letting α go to
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1, we get :

hfibNew(ν̃, Spµ , εµ) .
1

r − 1

(∫
log+ ‖DyST pµ−1x ◦ ... ◦ Sx‖dν̃(x, y)− χ+

fib(ν̃, S
pµ)

)
.

By harmonicity of hfib(., Spµ , εµ) we have by summing over all the ergodic components
ν̃ of ν under Spµ :

hfibNew(ν, Spµ , εµ) .
1

r − 1

(∫
log+ ‖DyST pµ−1x ◦ ... ◦ Sx‖dν(x, y)− χ+

fib(ν, S
pµ)

)
,

.
1

r − 1

(∫
log+ ‖DyST pµ−1x ◦ ... ◦ Sx‖dµ(x, y)− χ+

fib(ν, S
pµ)

)
,

.
pµ
r − 1

(
χ+
fib(µ, S)− χ+

fib(ν, S)
)
.

This concludes the proof of the theorem as by Lemma 3.1 there is an integer kµ such
that : (

hfib − hfibkµ
)

(ν, S) =
1

pµ

(
hfib − hfibkµ

)
(ν, Spµ),

≤ 1

pµ
hfibNew(ν, Spµ , εµ).

Let Tn = S1 × ...× S1︸ ︷︷ ︸
n ×

be the n-torus. A map T ∈ Cr(Tn) with r > 1

is said to be a skew-product of circle maps when T is of the form
T (x1, ..., xn) = (f1(x1), f2(x1, x2), ..., fn(x1, ..., xn)) and for any 0 ≤ k ≤ n − 1
and any x1, ..., xk ∈ Tk the map xk+1 7→ fk+1(x1, ..., xk, xk+1) is a Cr circle map.

It is conjectured that any Cr map with r > 1 on a compact smooth manifold admits

a symbolic extension and that h +
∑
i χ

+
i

r−1 is a superenvelope, where
∑

i χ
+
i denotes the

sum of the positive Lyapunov exponents. It follows from the above theorem that this
conjecture holds for a Cr skew-product of interval maps with r > 1.

Corollary 6.12: Let T be a Cr skew-product of interval maps with r > 1, then h+
∑
i χ

+
i

r−1
is a superenvelope of T .

Proof. We argue by induction on n. As already noticed the case n = 1 was proved in [12].

By Theorem 6.11 with X = Tn−1 and M = T1 the map µ 7→ hfib(µ, S) +
χ+
fib(µ,S)

r−1 is a

fibered superenvelope. By induction hypothesis the function hX(π.) + 1
r−1

∑
i≤n−1 χ

+
i is

a superenvelope of (x1, ..., xn−1) 7→ (f1(x1), f2(x1, x2), ..., fn−1(x1, ..., xn−1)). By Propo-
sition 3.2 we conclude that the following map is a superenvelope of T :

hfib +
χ+
fib

r − 1
+ hX(π.) +

∑
i≤n−1

χ+
i = h+

1

r − 1

∑
i≤n

χ+
i .
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Theorem 6.13: Assume r = ∞. Then (hfibk )k is converging uniformly to zero. In par-

ticular hfib + E(π.) is a super envelope of X ×M for any superenvelope E of (X,T ).

Proof. Clearly we have hfibNew(., εk) ≤ supx∈X h
∗((ST lx)l, εk). According to Remark 6.7

(note that {Sx, x ∈ X} is a compact subset of C∞(M)) the term supx∈X h
∗ ((ST lx)l, εk)

is going to zero when k goes to infinity. We conclude the proof by applying Corollary
3.2.
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