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Abstract : We prove that Cr maps with r > 1 on a compact surface have symbolic
extensions, i.e. topological extensions which are subshifts over a finite alphabet. More
precisely we give a sharp upper bound on the so-called symbolic extension entropy, which
is the infimum of the topological entropies of all the symbolic extensions. This answers
positively a conjecture of S.Newhouse and T.Downarowicz in dimension two and im-
proves a previous result of the author [11].
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Résumé : Nous montrons que toute dynamique de classe Cr avec r > 1 sur une surface
compacte admet une extension symbolique, i.e. une extension topologique qui est un
sous-décalage à alphabet fini. Nous donnons plus précisément une borne (optimale) sur
l’infimum de l’entropie topologique de toutes les extensions symboliques. Ceci répond
positivement à une conjecture de S.Newhouse and T.Downarowicz en dimension deux et
améliore un résultat précédent de l’auteur [11].
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1. Introduction

By a dynamical system (X,T ) we mean a continuous map T on a compact metrizable
space X. One well studied class of dynamical systems are the symbolic ones, i.e. closed
subsets Y of AZ, with a finite alphabet A, endowed with the shift S. Such a pair (Y, S)
is also called a subshift. Given a dynamical system (X,T ) one wonders if there exists a
symbolic extension (Y, S) of (X,T ), i.e. a subshift (Y, S) along a continuous surjective
map π : Y → X such that π ◦ S = T ◦ π. We first observe that dynamical systems
with symbolic extensions have necessarily finite topological entropy. When a dynamical
system has symbolic extensions we are interested in minimizing their entropy. The
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topological symbolic extension entropy hsex(T ) = inf{htop(Y, S) : (Y, S) is a symbolic
extension of (X,T )} estimates how the dynamical system (X,T ) differs from a symbolic
extension from the point of view of entropy. The problem of the existence of symbolic
extensions leads to a deep theory of entropy which was developed mainly by M.Boyle
and T.Downarowicz, who related the existence of symbolic extensions and their entropy
with the convergence of the entropy of (X,T ) computed at finer and finer scales [3].

By using a result of J.Buzzi [14] involving Yomdin theory, M.Boyle, D.Fiebig, U.Fiebig
[5] proved that C∞ maps on a compact manifold admit principal symbolic extensions, i.e.
symbolic extensions which preserve the entropy of invariant measures [5]. On the other
hand C1 maps without symbolic extensions have been built in several works [24], [1],
[8], [20], [15], [16]. In the present paper we consider dynamical systems of intermediate
smoothness, i.e. Cr maps T on a compact manifold with 1 < r < +∞ (we mean that
T admits a derivative or order dr − 1e which is r − dr − 1e-Hölder). T.Downarowicz
and A.Maass have recently proved that Cr maps of the interval f : [0, 1] → [0, 1]
with 1 < r < +∞ have symbolic extensions [23]. More precisely they showed that

hsex(f) ≤ htop(f) + log ‖f ′‖∞
r−1 . The author built explicit examples [8] proving this upper

bound is sharp. Similar Cr examples with large symbolic extension entropy have been
previously built by T.Downarowicz and S.Newhouse for diffeomorphisms in higher di-
mension [24]. The results of T.Downarowicz and A.Maass have been extended by the
author in any dimension to nonuniformly entropy expanding maps (i.e. C1 maps whose
ergodic measures with positive entropy have nonnegative Lyapunov exponents) of class
Cr with 1 < r < +∞ [9]. More recently the author also proved the existence of symbolic
extensions for C2 surface local diffeomorphisms [11]. T.Downarowicz and S.Newhouse
have conjectured in [24] that Cr maps on a compact manifold with r > 1 have symbolic
extensions. The following theorem answers affirmatively to this conjecture in dimension
2 and gives a sharp upper bound for the symbolic extension entropy in the case of dif-
feomorphisms. This extends thus the results of [11]. When T : M →M is a C1 map on
a compact Riemannian manifold (M, ‖‖) we denote by R(T ) the exponential growth of

the derivative, i.e. R(T ) = limn→+∞
log+ ‖DTn‖

n . This quantity does not depend on the
choice of the Riemannian metric ‖‖ on M .

Theorem 1. Let T : M → M be a Cr map on a compact surface M with r > 1. Then
T admits symbolic extensions and

hsex(T ) ≤ htop(T ) +
4R(T )

r − 1

Moreover, if T is a local surface diffeomorphism, then

hsex(T ) ≤ htop(T ) +
R(T )

r − 1

The paper is organized as follows. We first recall the background of the theory of
symbolic extensions and properties of continuity of the sum of the positive Lyapunov
exponents. Following S.Newhouse we also recall how the local entropy is bounded from
above by the local volume growth of smooth disks. Then we state our main results and
as in [11] we reduce them to a Reparametrization Lemma of Bowen’s balls in a similar
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(but finer) approach of the classical Yomdin theory. The last sections are devoted to the
proof of the Reparametrization Lemma.

2. Preliminaries

In the following we denote M(X,T ) the set of invariant Borel probability measures
of the dynamical system (X,T ) and Me(X,T ) the subset of ergodic measures. We
endow M(X,T ) with the weak star topology. Since X is a compact metric space, this
topology is metrizable. We denote by dist a metric on M(X,T ). It is well known
that M(X,T ) is compact and convex and its extreme points are exactly the ergodic
measures. Moreover if µ ∈ M(X,T ) there exists an unique Borel probability measure
Mµ onM(X,T ) supported byMe(X,T ) such that for all Borel subsets B of X we have
µ(B) =

∫
ν(B)dMµ(ν). This is the so called ergodic decomposition of µ. A bounded

real Borel map f :M(X,T )→ R is said to be harmonic if f(µ) =
∫
Me(X,T )

f(ν)dMµ(ν)

for all µ ∈ M(X,T ). It is a well known fact that affine upper semicontinuous maps are
harmonic. The measure theoretical entropy h :M(X,T )→ R+ is always harmonic [39]
but is not upper semicontinuous in general. It may not be upper semicontinuous even
for Cr map for any r ∈ R+ [32]. However h is upper semicontinuous for C∞ maps [35].

If f is a bounded real Borel map defined on Me(X,T ), the harmonic extension f of
f is the function defined on M(X,T ) by :

f(µ) :=

∫
Me(X,T )

f(ν)dMµ(ν)

It is easily seen that f coincides with f on Me(X,T ) and that f is harmonic.

2.1. Entropy structure. The measure theoretical entropy function can be computed
in many ways as limits of nondecreasing sequences of nonnegative functions defined on
M(X,T ) (with decreasing sequences of partitions, formula of Brin-Katok,...). The en-
tropy structures are such particular sequences whose convergence reflect the topological
dynamic : they allow for example to compute the tail entropy [7] [22], but also especially
the symbolic extension entropy [3] [22] (see below for precise statements).

We skip the formal definition of entropy structures, but we recall a basic fact. Two
nondecreasing sequences, (hk)k∈N and (gk)k∈N, of nonnegative functions defined on
M(X,T ) are said to be uniformly equivalent if for all γ > 0 and for all k ∈ N, there
exists l ∈ N such that hl > gk−γ and gl > hk−γ. Two entropy structures are uniformly
equivalent and any nondecreasing sequence of nonnegative functions which is uniformly
equivalent to an entropy structure is itself an entropy structure. In other terms the set
of entropy structures is an equivalence class for the above relation.

We recall now Lemma 1 of [11] which relates the entropy structures of a given dy-
namical system with those of its inverse and powers.

Lemma 1. Let (X,T ) be a dynamical system with finite topological entropy and let
H = (hk)k∈N be an entropy structure of T p with p ∈ N\{0} (when T is a homeomorphism

we consider p ∈ Z \ {0}). Then the sequence 1
|p|H|M(X,T ) =

(
hk|M(X,T )

|p|

)
k∈N

defines an

entropy structure of T .
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We finally check that the minimum of two entropy structures defines again an entropy
structure.

Lemma 2. Let (X,T ) be a dynamical system with finite topological entropy. If H =
(hk)k and G = (gk)k are two entropy structures, then min(H,G) := (min(hk, gk))k is also
an entropy structure.

Proof : Let γ > 0 and k ∈ N. As H and G are both entropy structures, they are in
particular uniformly equivalent. Therefore there exists an integer l such that hl > gk−γ
and gl > hk − γ. We can assume that l > k so that hl ≥ hk by monotonicity of H.
Therefore hl > min(hk, gk)− γ and min(hl, gl) > hk − γ. �

2.2. Tail entropy. In order to study the properties of upper semicontinuity of the
entropy function of a dynamical system and in particular the existence of measures of
maximal entropy, M.Misiurewicz introduced in the seventies the following quantity which
is now known as the tail entropy of the system. Let us first recall some usual notions
relating to the entropy of dynamical systems (we refer to [39] for a general introduction
to entropy).

Consider a continuous map T : X → X with (X, d) a compact metric space. Let
n ∈ N and δ > 0. A subset F of X is called a (n, δ) separated set when for all x, y ∈ F
there exists 0 ≤ k < n such that d(T kx, T ky) ≥ δ. Let Y be a subset of X. A subset F
of Y is called a (n, δ) spanning set of Y when for all y ∈ Y there exists z ∈ F such that
d(T ky, T kz) < δ for all 0 ≤ k < n. Given a point x ∈ X we denote by B(x, n, δ) the
Bowen’s ball centered at x of radius δ and length n :

B(x, n, δ) := {y ∈ X, d(T ky, T kx) < δ for k = 0, ..., n− 1}

The tail entropy, h∗(T ), of (X,T ) is then defined by

h∗(T ) := lim
ε→0

lim sup
n→+∞

sup
x∈X

1

n
log min {]F : F is a (n, δ) spanning set of B(x, n, ε)}

This quantity is a topological invariant which estimates the entropy appearing at
arbitrarily small scales. The tail entropy bounds from above the defect of upper semi-
continuity of the entropy function [33] :

∀µ ∈M(X,T ), lim sup
ν→µ

h(ν)− h(µ) ≤ h∗(T )

In general the supremum of the defect of upper semicontinuity of the entropy function
differs from the tail entropy. But it is easily seen that for any entropy structure (hk)k of
(X,T ), we have lim supν→µ h(ν)−h(µ) ≤ limk lim supν→µ(h−hk)(ν) and T.Downarowicz
proved then the following variational principle [22] (see also [7]) :

sup
µ∈M(X,T )

lim
k

lim sup
ν→µ

(h− hk)(ν) = lim
k

sup
µ∈M(X,T )

(h− hk)(µ) = h∗(T )(1)

By using Yomdin theory J.Buzzi [14] established the following upper bound on the
tail entropy of Cr maps T on a compact manifold M with r > 1 :
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h∗(T ) ≤ dim(M)

r
R(T )(2)

This inequality is known to be sharp for noninvertible maps [14], [38]. We will prove
in the present paper a similar sharp upper bound on the tail entropy of Cr surface
diffeomorphisms with r > 1 (see Theorem 5 below).

When h∗(T ) = 0 the dynamical system (X,T ) is said to be asymptotically h-expansive.
For example, uniformly hyperbolic dynamical systems or piecewise monotone interval
maps are asymptotically h-expansive. Then entropy structures are converging uniformly
to the entropy function. There exist therefore measures of maximal entropy by upper
semicontinuity of the entropy function and also symbolic extensions preserving the en-
tropy of invariant measures (see Theorem 2 below). According to Inequality (2) it is
also the case of C∞ maps on a compact manifold.

2.3. Symbolic extension entropy function. A symbolic extension of (X,T ) is a
subshift (Y, S) of a full shift on a finite number of symbols, along with a continuous
surjection π : Y → X such that T ◦ π = π ◦ S. Given a symbolic extension π :
(Y, S)→ (X,T ) we consider the extension entropy hπext :M(X,T )→ R+ defined for all
µ ∈M(X,T ) by :

hπext(µ) = sup
π∗ν=µ

h(ν)

Then the symbolic extension entropy function, hsex :M(X,T )→ R+, is :

hsex = inf hπext

where the infimum holds over all the symbolic extensions of (X,T ). By convention,
if (X,T ) does not admit any symbolic extension we simply put hsex ≡ +∞. Recall we
defined in the introduction the topological symbolic extension entropy hsex(T ) as the
infimum of the topological entropy of the symbolic extensions of (X,T ) (as previously
we put hsex(T ) = +∞ when there are no such extensions). M.Boyle and T.Downarowicz
proved that these two quantities are related by the following variational principle :

hsex(T ) = sup
µ∈M(X,T )

hsex(µ)(3)

We present now the major Symbolic Extension Entropy Theorem of [3] which allows
to compute the symbolic extension entropy function from the properties of convergence
of any entropy structure. We follow the exposition in [10]. Let S(X,T ) be the set
of nonnegative upper semicontinuous functions defined on M(X,T ) to which we add
the function constant equal to +∞. Let (hk)k be an entropy structure, we define an
increasing operator on S(X,T ), denoted by Tsex, as follows :

Tsex : S(X,T ) → S(X,T )

f 7→

[
µ 7→ lim

k
lim sup

ν∈M(X,T ),ν→µ
(f + h− hk) (ν)

]
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One easily checks from the uniform equivalence relation that Tsex does not depend
on the choice of the entropy structure (hk)k. We also observe that the tail variational
principle can be written as supµ∈M(X,T ) Tsex0(µ) = h∗(T ) where 0 denotes the zero

function on M(X,T ).
The least fixed point of Tsex can be obtained in a inductive way as the stationary limit

of the transfinite sequence (T αsex0)α where T αsex0 is Tsex(T α−1sex 0) for successor ordinals α

and T αsex0 is the least upper bound of T βsex0 in S(X,T ) over β < α for limit ordinals α.
The order of accumulation of entropy, which is the least ordinal α such that T αsex0 =
T α+1
sex 0, has been extensively studied in [13] and [31].
By using the affine structure of the set of invariant probability measures M.Boyle and

T.Downarowicz proved that the least fixed point of Tsex (whose existence is ensured by
Tarski-Knaster Theorem) coincides with the infimum of the affine fixed points of Tsex.
We recall now the Symbolic Extension Entropy Theorem :

Theorem 2. (Theorem 5.5 of [3]) The affine fixed points of Tsex are exactly the functions
hπext−h, i.e. f is a nonnegative affine upper semicontinuous function on M(X,T ) fixed
by Tsex if and only if there exists a symbolic extension π such that f = hπext−h. Moreover
hsex − h is the least fixed point of Tsex.

When (X,T ) is asymptotically h-expansive, then the zero function is a fixed point of
Tsex because entropy structures are converging uniformly. Therefore such systems (in-
cluding C∞ maps on compact manifold) admit symbolic extensions π : (Y, S) → (X,T )
with hπext = h. This result was first proved by M.Boyle, D.Fiebig and U.Fiebig [5].

The Passage Theorem of T.Downarowicz and A.Maass [23] gives a weaker condition for
an affine upper semicontinuous function onM(X,T ) to be fixed by Tsex : one only needs
to consider the lim sup in ergodic measures ν in the definition of Tsex. More precisely a
nonnegative affine upper semicontinuous function f on M(X,T ) is a fixed point of Tsex
if and only if lim supν∈Me(X,T ),ν→µ (f + h− hk) (ν) = f(µ) for all µ ∈ M(X,T ). This
can be restated as follows :

Theorem 3 (Downarowicz, Maass). [23][21] Let (X,T ) be a dynamical system with
finite topological entropy. Let g be a nonnegative upper semicontinuous affine function
on M(X,T ) such that for every γ > 0, for every µ ∈ M(X,T ) and for every entropy
structure H = (hk)k∈N there exists kµ ∈ N and δµ > 0 such that for every ergodic measure
ν satisfying dist(ν, µ) < δµ it holds that :

(h− hkµ)(ν) ≤ g(µ)− g(ν) + γ(4)

Then there exists a symbolic extension π : (Y, S) → (X,T ) such that hπext − h = g. In
particular hsex − h ≤ g.

It follows from the uniform equivalence relation that the assumptions of Theorem 3
hold as soon as they are satisfied by one particular entropy structure.

2.4. Newhouse local entropy. We recall now the ”Newhouse local entropy”. Let
x ∈ X, ε > 0, δ > 0, n ∈ N and F ⊂ X a Borel set, we define :
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H(n, δ|x, F, ε) := log max
{
]E : E ⊂ F

⋂
B(x, n, ε) and E is a (n, δ) separated set

}
H(n, δ|F, ε) := sup

x∈F
H(n, δ|x, F, ε)

h(δ|F, ε) := lim sup
n→+∞

1

n
H(n, δ|F, ε)

h(X|F, ε) := lim
δ→0

h(δ|F, ε)

Then for any ergodic measure ν we put :

hNew(X|ν, ε) := lim
α→1

inf
ν(F )>α

h(X|F, ε)

Finally we extend the function hNew(X|·, ε) to M(X,T ) by the harmonic exten-
sion. Given a nonincreasing sequence (εk)k∈N converging to 0, we consider the sequence
HNewT = (hNewk )k∈N with hNewk := h − hNew(X|., εk) for all integers k. A similar quan-
tity with minor differences was first introduced by S.Newhouse in [35]. T.Downarowicz
proved this sequence defines an entropy structure [22] for homeomorphisms and the
author extended the result in the noninvertible case [12].

2.5. Lyapunov exponents. Let (M, ‖‖) be a compact Riemannian manifold of dimen-

sion d and let T : M → M be a C1 map. We denote ‖DxT‖ = supv∈TxM−{0}
‖DxT (v)‖
‖v‖

the induced norm of the differential DxT of T at x and ‖DT‖ = supx∈M ‖DxT‖ the
supremum norm of the differential of T . We consider an ergodic T -invariant measure ν.
According to Oseledet’s theorem [36], there exist real numbers χ1(ν) ≥ ... ≥ χd(ν) ≥
−∞, an increasing sequence of measurable invariant subbundles of the tangent space
{0} = Gd+1 ⊆ Gd ⊆ ... ⊆ G1 = TM and a Borel set F with ν(F ) = 1 such that for all
x ∈ F and all vi ∈ Gi \Gi+1 with i = 1, ..., d we have

lim
n→+∞

1

n
log ‖DxT

n(vi)‖ = χi(ν)

The real numbers χi(ν) are the well-known Lyapunov exponents of ν (sometimes
we use also the notations χi(ν, T ) to avoid ambiguities). We prove now elementarily
that the harmonic extension of the sum of the positive Lyapunov exponent is upper
semicontinuous. In the one dimensional case it was proved by T.Downarowicz and
A.Maass by using a clever argument of convexity (see Fact 2.5 of [23]). We just adapt
the proof of [11] which only deals with the dimension d = 2. If S : M →M is a C1 map
we denote by ΛkDxS the map induced by the differential map DxS on the kth exterior
power ΛkTxM (with 1 ≤ k ≤ d) of the tangent space of M at x ∈ M and by ‖‖k the
induced norm on the space of multilinear maps on ΛkTxM .

Lemma 3. For all 1 ≤ e ≤ d and for all µ ∈M(M,T ), we have :

e∑
i=1

χ+
i (µ) = inf

n∈N

1

n

∫
max
k=1,...,e

log+ ‖ΛkDxT
n‖kdµ(x)

In particular
∑e

i=1 χ
+
i :M(M,T )→ R+ is upper semicontinuous.
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Proof :
For all integers n > 0 we consider the function fn :M(M,T )→ R+ defined by :

∀µ ∈M(M,T ), fn(µ) =

∫
max
k=1,...,e

log+ ‖ΛkDxT
n‖kdµ(x)

This function is clearly continuous and affine, and therefore harmonic. Also (fn(µ))n∈N
is a subadditive sequence for all µ ∈M(M,T ).

It follows from Oseledet’s theorem that
∑e

i=1 χ
+
i (ν) = limn→+∞

fn(ν)
n for all ergodic

measures ν. Consider now a general measure µ ∈M(M,T ). We have :

e∑
i=1

χ+
i (µ) :=

∫
Me(M,T )

e∑
i=1

χ+
i (ν)dMµ(ν)

=

∫
Me(M,T )

lim
n→+∞

fn(ν)

n
dMµ(ν)

Obviously fn(ν) ≤ e log+ ‖DT‖ for all ergodic measures ν. Therefore by applying the
theorem of dominated convergence we get :

e∑
i=1

χ+
i (µ) = lim

n→+∞

∫
Me(M,T )

fn(ν)

n
dMµ(ν)

and by harmonicity of fn :

e∑
i=1

χ+
i (µ) = lim

n→+∞

fn(µ)

n

But the sequence (fn(µ))n∈N is subadditive so that :

e∑
i=1

χ+
i (µ) = inf

n∈N

fn(µ)

n

We conclude that
∑e

i=1 χ
+
i is an upper semicontinuous function as an infimum of a

family of continuous functions. �

Clearly the function
∑e

i=1 χ
+
i is uniformly bounded from above by

Re(T ) := lim sup
n

sup
x∈X

1

n
max
k=1,...,e

log+ ‖ΛkDxT
n‖k

With the previous notations we have also Re(T ) ≤ eR(T ) and R1(T ) = R(T ). In fact
the following variational principle holds [12] :

sup
µ

e∑
i=1

χ+
i (µ) = Re(T )
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We notice that the harmonic extension
∑e

i=1 χ
+
i can be rewritten in the most common

way as
∑e

i=1 χ
+
i =

∫
M

∑e
i=1 χ

+
i (x)dµ(x) where (χi(x))i=1,...,d denotes the Lyapunov ex-

ponents of a regular point x ∈M .

In the special case e = d we also recall that the sum of all the Lyapunov exponents
(positive or not) are given by

d∑
i=1

χi(µ) =

∫
M

log Jacx(T )dµ(x)

In the following we are interested in the entropy of ergodic measures. We denote by∑
χ+ (resp.

∑
χ−) the sum of all the positive (resp. negative) Lyapunov exponents.

The Ruelle-Margulis inequality states that for a C1 map T : M → M on a compact
manifold M the entropy hT (ν) of an ergodic measure ν is bounded from above by the
sum of its positive Lyapunov exponents. When T is a diffeomorphism it is easily seen
by applying the Ruelle-Margulis inequality to T and its inverse T−1 and by using the
equality hT (ν) = hT−1(ν) that any ergodic measure ν ∈Me(M,T ) with non zero entropy
has at least one positive and one negative Lyapunov exponent, moreover

h(ν) ≤ min
(∑

χ+(ν),−
∑

χ−(ν)
)

2.6. Local entropy and volume growth. In this section we recall Theorem 2 of [35]
(in fact an intermediate result in its proof) which relates the Newhouse local entropy of
an ergodic measure with the local volume growth of smooth disks. We begin with some
definitions. Let T : M → M be a Cr map on a compact manifold with r > 1. We fix a
Riemannian metric ‖‖ on the manifold M and we endow M with the induced distance.

A C1 map σ from the unit square [0, 1]k of Rk to M , which is a diffeomorphism onto
its image, is called a k-disk. For any k-disk σ and for any χ > 0, γ > 0 and C > 1,
we consider the set HnT (σ, χ, γ, C) of points of [0, 1]k whose exponential growth of the
derivative of the n-first iterations of T composed with σ is almost equal to χ :

HnT (σ, χ, γ, C) :=
{
t ∈ [0, 1]k : ∀1 ≤ j ≤ n, C−1e(χ−γ)j ≤ ‖Dt

(
T j ◦ σ

)
‖ ≤ Ce(χ+γ)j

}
We also denote by |σ| the k-volume of σ, i.e. |σ| =

∫
‖ΛkDtσ‖kdλ(t) where dλ is the

Lebesgue measure on [0, 1]k. Then given χ > 0, γ > 0, C > 1, x ∈ M , n ∈ N and ε > 0
we define the local volume growth of σ at x with respect to these parameters as follows
:

V n,ε
x (σ|χ, γ, C) :=

∣∣∣Tn−1 ◦ σ|HnT (σ,χ,γ,C)∩σ−1(B(x,n,ε))

∣∣∣
Fix an ergodic measure ν and let lν be the codimension of the first Lyapunov eigenspace

Gi with χi(ν) < 0. In [35] S.Newhouse proved by using Pesin theory that for some ε > 0
depending only on the manifold M and for any 1 > α > 0 and γ > 0 there exist a Borel
set Fα of ν-measure larger than α and a lν-disk σ of class C∞, such that for all δ > 0
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one can find a constant C > 1 depending only on Fα and another constant D depending
only on δ and Fα satisfying for all n ∈ N and for all x ∈ Fα :

H(n, δ|x, Fα, ε) ≤ DeγnV n,ε
x (σ|χ1(ν), γ, C)(5)

In fact Fα is a Pesin block and the lν-disk can be chosen to be the exponential map
restricted to a neighborhood of the unstable distribution at some point of Fα. In the
following we will consider only smooth 1-disks σ : [0, 1] → Rd. We denote by σ′ the
derivative Dσ of the curve σ.

3. Statements

We first state in this section the main result of this paper by specifying Theorem 1
at the measure theoretic level. It will be deduced, by using the Estimate theorem, from
the below Main Proposition which gives an upper bound on the Newhouse local entropy
involving the positive Lyapunov exponents. The proof of this proposition is the topic of
the next sections.

Theorem 4. Let T : M →M be a Cr surface map (resp. local surface diffeomorphism)
with r > 1. Then there exists a symbolic extension π : (Y, S)→ (X,T ) with

hπext − h =
2
∑
χ+(µ)

r − 1

(
resp. =

χ+
1 (µ)

r − 1

)
In particular, for all µ ∈M(M,T ),

hsex(µ)− h(µ) ≤ 2
∑
χ+(µ)

r − 1

(
resp.

χ+
1 (µ)

r − 1

)
The above theorem will follow from the following Main Proposition by applying the

Estimate Theorem to the upper semicontinuous affine function g = 2
∑
χ+

r−1 or g =
χ+
1

r−1 .
Remark that Theorem 1 stated in the introduction is the topological version of Theorem
4 : it is deduced by the usual variational principle for the entropy and the variational
principle for the symbolic extension entropy (Equation (3)). According to the examples
built in [24] the upper bound on the symbolic extension entropy function in Theorem
4 is sharp in the case of local surface diffeomorphism. More precisely S.Newhouse and
T.Downarowicz exhibit examples of Cr surface diffeomorphisms with r > 1 which admit

an hyperbolic periodic measure γp with hsex(γp) =
χ+
1 (γp)
r−1 . However the optimality of

the upper bound in the general case is open.

As the functions hπext, χ
+
1 and

∑
χ+ are upper semicontinuous it follows from Theorem

4 that the entropy function of a Cr surface map with r > 1 is a difference of nonnegative
upper semicontinuous functions. In particular generic measures are continuity points of
the entropy function. In general this is false for C1 maps. We refer to [10] for further
details on the links between the symbolic extension entropy and the properties of conti-
nuity of the entropy function.
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We give now a new upper bound on the tail entropy of Cr surface diffeomorphisms
with r > 1. The examples built in [24] show that this upper bound is sharp.

Theorem 5. Let T : M → M be a Cr surface diffeomorphisms with r > 1. Then, for

all µ ∈M(X,T ), we have Tsex0(µ) ≤ χ+
1 (µ)
r and in particular,

h∗(T ) ≤ R(T )

r

Theorem 4 and Theorem 5 will both follow from the following proposition.

Main Proposition . Let T : M → M be a Cr map with r > 1 on a compact manifold
M of dimension d. Let µ be a T -invariant measure and fix some γ > 0.

Then there exist δµ > 0, an entropy structure (hk)k and kµ ∈ N such that for every
ergodic T -invariant measure ν with dist(ν, µ) < δµ and either with at most one nonneg-
ative Lyapunov exponent or with all Lyapunov exponents nonnegative (i.e. lν is equal to
either 0, 1 or d) it holds that :

(h− hkµ)(ν) ≤ lν
r − 1

 lν∑
i=1

χ+(µ)−
∑

χ+(ν)

+ γ(6)

In the case lν = d it is a direct consequence of the Main Theorem of [9] that we recall
below. Then, to prove the proposition we only need to consider the case lν ≤ 1 and
we finally conclude by considering the minimum of the two entropy structures, the one
corresponding to the case lν ≤ 1 and the other corresponding to the case lν = d (see
Lemma 2). It is worth noting that when d = 1 Inequality (6) can be obtained by two
ways which seem to be different : the first one due to T.Downarowicz and A.Maass by
studying the critical set and the second one presented in the present paper which follows
from the Reparametrization Lemma stated in the next section.

We think that this statement should hold for any ergodic measure without condition
on its Lyapunov spectrum. It will implies Theorem 4 in any dimension. Let us just do it
in the two dimensional case. We first recall the main result of [9] which is a generalization
of the approach of T.Downarowicz and A.Maass.

Proposition 1. (Main Theorem of [9]) Let T : M →M be a Cr map, with r > 1, on a
compact manifold of dimension d. Let µ be an invariant measure and fix some γ > 0.

Then there exist δµ > 0, an entropy structure (hk)k and kµ ∈ N such that for every
ergodic measure ν with dist(ν, µ) < δµ it holds that :

(7) (h− hkµ)(ν) ≤ d (f(µ)− f(ν))

r − 1
−
∑

χ−(ν) + γ

where f(ξ) = max
(∫

log Jacx(T )dξ(x), 0
)

for all invariant measures ξ.

When T is a local diffeomorphism then ξ 7→
∫

log Jacx(T )dξ(x) is continuous on
M(M,T ). Then, with the notations of the above theorem, we have (h − hkµ)(ν) ≤
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−
∑
χ−(ν) + 2γ for ν close enough to µ. In particular if (h − hkµ)(ν) > 2γ then ν has

at least one negative Lyapunov exponent (and also at least a positive one by Ruelle-
Margulis inequality).

We deduce now the theorems of this section from the above proposition.

Proof of Theorem 4 : As we follow the strategy of [23] we only sketch the proof.
First we consider the case of local surface diffeomorphisms. According to the above
remark it is enough to consider ergodic measures with one negative and one positive

Lyapunov exponent. Then one just applies the Estimate Theorem with g =
χ+
1

r−1 which

is an upper semicontinuous function satisfying (4) by assumption. We prove similarly

Theorem 4 for general surface maps by applying the Estimate Theorem with g = 2
∑
χ+

r−1 .
�

Let us observe that unfortunately we are not able to deduce the existence of symbolic
extensions for Cr diffeomorphisms with r > 1 on compact manifolds of dimension 3 from
Proposition 1, since the ergodic measure ν may have exactly one positive, one zero and

one negative Lyapunov exponent (lTν = lT
−1

ν = 2).

Proof of Theorem 5 : Let (hk)k be an entropy structure of (M,T ) and let µ ∈
M(X,T ). By Ruelle-Margulis inequality we have for all ν ∈M(M,T )

(h− hk)(ν) ≤ min

(
χ+
1 (ν),

(
h− hk +

χ+
1

r − 1

)
(ν)− χ+

1 (ν)

r − 1

)
By taking the lim sup when ν goes to µ we have for all integers k

lim sup
ν→µ

(h− hk)(ν) ≤ sup
ν∈M(X,T )

min

(
χ+
1 (ν), lim sup

ξ→µ

(
h− hk +

χ+
1

r − 1

)
(ξ)− χ+

1 (ν)

r − 1

)

and since
χ+
1

r−1 is a fixed point of Tsex by Theorem 4 we have when k goes to infinity

lim
k

lim sup
ν→µ

(h− hk)(ν) ≤ sup
ν∈M(X,T )

min

(
χ+
1 (ν), lim

k
lim sup
ξ→µ

(
h− hk +

χ+
1

r − 1

)
(ξ)− χ+

1 (ν)

r − 1

)

≤ sup
ν∈M(X,T )

min

(
χ+
1 (ν),

χ+
1 (µ)

r − 1
− χ+

1 (ν)

r − 1

)

As a continuous piecewise affine function in χ+
1 (ν) the right member min

(
χ+
1 (ν),

χ+
1 (µ)
r−1 −

χ+
1 (ν)
r−1

)
attains its maximum at

χ+
1 (µ)
r and is therefore bounded from above by

χ+
1 (µ)
r . We con-

clude according to the tail variational principle (1) that h∗(T ) ≤ R(T )
r . �

We already have noticed that the inequality h∗(T ) ≤ dR(T )
r due to J.Buzzi holds for

any Cr maps on a compact manifold M of dimension d. By adapting the proof it is not

difficult to also prove Tsex0(µ) ≤ dχ+
1 (µ)
r for all µ ∈ M(M,T ) [12]. But we do not know



Symbolic extensions in intermediate smoothness on surfaces 13

if in this inequality we can replace dR(T ) (resp. dχ+
1 (µ)) by max1≤e≤dRe(T ) (resp.∑

χ+(µ)).

4. Bounding local entropy of curves with a Reparametrization Lemma of
Bowen balls

In a similar way as in [11] we reduce now the Main Proposition to a result of
reparametrization of 1-disk σ in Bowen balls by volume contracting maps. Then the
local volume growth and thus the Newhouse local entropy of some ergodic measure ν is
just bounded from above by the logarithmic growth of the number of reparametrizations.
In fact we only need to reparametrize Bowen balls on a set of large ν measure. As one
can assume the entropy and thus the maximal Lyapunov exponent χ1(ν) to be nonzero
it is enough to consider the intersection of Bowen balls with the set HnT (σ, χ1(ν), γ, C)
for small γ > 0 and for any C > 1. This is one of the main differences with Yomdin
theory where the whole Bowen ball is reparametrized by volume contracting maps.

In [11] we do not use Newhouse estimate (which involves Pesin theory) of the local
entropy with the local volume growth. Then we had to reparametrize not only curves
but the intersection of Bowen balls with finite hyperbolic sets which are in general not
one dimensional. The present situation is of course easier and allows us to get Cr esti-
mates.

We denote H : [1,+∞[→ R the function defined by H(t) = −1
t log(1t )−(1− 1

t ) log(1−
1
t ). Moreover [x] is the usual integer part of x if x > 0 and zero if not (i.e. [x] is the
largest nonnegative integer k such that max(x, 0) ≥ k). Afterwards we also use the
notation dxe to denote the usual ceiling function (i.e. dxe is the smallest integer k such
that x ≤ k). We recall that a map T between two smooth Riemannian manifolds is said
of class Cr with r > 0 when it admits a derivative of order dr − 1e which is r − dr − 1e-
Hölder. We denote then by ‖T‖r the r − dr − 1e-Hölder norm of the dr − 1e-derivative
of T . Observe that if T is Cr then T is Cs for all 0 ≤ s ≤ r. When dr − 1e < s ≤ r
we have moreover ‖T‖s ≤ C‖T‖r with a constant C depending only on the Riemannian
manifolds. Finally ‖T‖0 will denote the usual supremum norm of T .

Reparametrization Lemma . Let T : M →M be a Cr map with r > 1 on a compact
Riemannian manifold M .

Then for all χ > 0, γ > 0 and C > 1, there exist ε > 0 depending only on ‖T‖s,
s = 1, ..., [r], r and a universal constant A > 0 with the following properties.

For all x ∈ M , for all positive integers n and for all 1-disks σ : [0, 1] → M of class
Cr with maxs=1,...,[r],r ‖σ‖s ≤ 1, there exist a family Fn of affine maps from [0, 1] to

[0, 1] and a real positive number B depending only on σ, such that with λ+n (x, T ) :=
1
n

∑n−1
j=0 log+ ‖DT jxT‖ the following properties hold :

(i)

∀ψ ∈ Fn, ∀0 ≤ l ≤ n, ‖D(T l ◦ σ ◦ ψ)‖ ≤ 1,
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(ii)

HnT (σ, χ, γ, C) ∩ σ−1 (B(x, n+ 1, ε)) ⊂
⋃
ψ∈Fn

ψ([0, 1]),

(iii)

log ]Fn ≤
1

r − 1

(
1 +H([λ+n (x, T )− χ] + 3)

) (
λ+n (x, T )− χ

)
n+An+B.

We deduce now the Main Proposition from the above statement by following [11]. In
the proof the terms λ+n (x, T ) for typical ν points x and χ will be respectively related
with the maximal Lyapunov exponent of µ and ν where ν is an ergodic measure near an
invariant measure µ. Moreover the quantity H([λ+n (x, T )− χ] + 3) will be negligible.

Proof of the Main Proposition assuming the Reparametrization Lemma :
Let µ ∈M(M,T ) and let γ > 0. By Lemma 3 we choose pµ ∈ N \ {0} such that

χ+
1 (µ) = inf

n∈N

∫
log+ ‖DxT

n‖dµ(x)

n
≥

∫
log+ ‖DxT

pµ‖dµ(x)

pµ
− (r − 1)γ

4
.

One can also assume pµ large enough such that H
(
pµ

(r−1)γ
4

)
R(T ) < (r−1)γ

4 and
A+2γ
pµ

< γ
4 . We will prove the statement of the Main Proposition with the entropy

structure 1
pµ
HNewT pµ |M(M,T ) (see Lemma 1).

By continuity of µ 7→
∫

log+ ‖DyT
pµ‖dµ(y) and by upper semicontinuity of χ+

1 one
can choose the parameter δµ > 0 such that for all ergodic measures ν with dist(ν, µ) < δµ
we have : ∣∣∣∣∫ log+ ‖DyT

pµ‖dν(y)−
∫

log+ ‖DyT
pµ‖dµ(y)

∣∣∣∣ < (r − 1)γ

4
,

χ+
1 (µ) > χ+

1 (ν)− (r − 1)γ

4
.

We fix some ergodic measure ν with dist(µ, ν) < δµ with at most one nonnegative

Lyapunov exponent. One can assume h(ν) > 3γ
4 because 1

pµ
hNewT pµ (M |ν, εµ) ≤ h(ν) and

the right member of Inequality (6), 1
r−1

(
χ+
1 (µ)− χ+

1 (ν)
)

+ γ, is larger than 3γ
4 . In

particular we have by Ruelle-Margulis inequality χ+
1 (ν) ≥ h(ν) > 0. The measure ν

need not be ergodic under T pµ but has at most pµ ergodic components ν̃ which all
satisfy χi(ν̃, T

pµ) = pµχi(ν) for all i = 1, ..., d and thus lν̃ = lν = 1.
We fix such an ergodic component ν̃. For any 0 < α < 1 we let Fα be the Borel set of

ν̃ measure larger than α as in Section 2.6.
One can also assume by the ergodic theorem that (λ+n (x, T pµ))n∈N are converging uni-

formly in x ∈ Fα to
∫

log+ ‖DyT
pµ‖dν̃(y) and that Fα ⊂ Gα with Gα as in Section 2.6

for T pµ and ν̃.

Let σ : [0, 1] → M be a 1-disk associated to Fα and ν̃ satisfying Inequality (5), i.e.
with ε and D as in (5)

HT pµ (n, δ|x, Fα, ε) ≤ DeγnV n,ε
x,T pµ (σ|χ1(ν̃), γ, C)
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We apply now the Reparametrization Lemma to T pµ , σ and to a given point x ∈ Fα
: there exist ε > εµ > 0 depending only on ‖T pµ‖s, s = 1, ..., [r], r, a real number B de-
pending only on χ1(ν̃), γ, C and ‖σ‖s, ‖T pµ‖s, s = 1, ...[r], r, and families (Fn)n of affine
maps from [0, 1] to [0, 1] satisfying the properties (i)-(ii)-(iii) of the Reparametrization
Lemma. By (i) the volume of Tn−1 ◦ σ ◦ ψ is less than or equal to 1 for all ψ ∈ Fn.
Therefore we have with (ii)

V n,ε
x,T pµ (σ|χ1(ν̃), γ, C) ≤ ]Fn

and it follows from (iii) that :

hT pµ (M |Fα, εµ) ≤ lim
n→+∞

sup
x∈Fα

1

r − 1

(
1 +H([λ+n (x, T pµ)− χ1(ν̃)] + 3)

) (
λ+n (x, T pµ)− χ1(ν̃)

)
+A+ 2γ

According to the definition of Fα we have :

lim
n→+∞

inf
x∈Fα

λ+n (x, T pµ)− χ1(ν̃) = lim
n→+∞

sup
x∈Fα

λ+n (x, T pµ)− χ1(ν̃)

=

∫
log+ ‖DyT

pµ‖dν̃(y)− χ1(ν̃) ≥ 0

Now we distinguish cases :

• either
∫

log+ ‖DyT
pµ‖dν̃(y) < χ1(ν̃) + pµ

(r−1)γ
4 , then the term

limn→+∞ supx∈Fα H([λ+n (x, T pµ) − χ1(ν̃)] + 3) (λ+n (x, T pµ)− χ1(ν̃)) is bounded

from above by log(2)
(∫

log+ ‖DyT
pµ‖dν̃(y)− χ1(ν̃)

)
which is less than log(2)pµ

(r−1)γ
4 .

• or
∫

log+ ‖DyT
pµ‖dν̃(y) ≥ χ1(ν̃)+pµ

(r−1)γ
4 , then we have limn→+∞ infx∈Fα λ

+
n (x, T pµ)−

χ1(ν̃) ≥ pµ
(r−1)γ

4 . But we choose pµ large enough so that R(T )H
(
pµ

(r−1)γ
4

)
<

(r−1)γ
4 . It follows that :

limn→+∞ supx∈Fα H([λ+n (x, T pµ)− χ1(ν̃)] + 3) (λ+n (x, T pµ)− χ1(ν̃))

≤ H
(
pµ

(r−1)γ
4

)
pµR(T )

≤ pµ
(r−1)γ

4

We get finally in both cases :

hT pµ (M |Fα, εµ) ≤ 1

r − 1

(∫
log+ ‖DyT

pµ‖dν̃(y)− χ1(ν̃)

)
+ pµ

γ

4
+A+ 2γ

Then by letting α go to 1 we obtain since A+2γ
pµ

< γ
4 :

1

pµ
hNewT pµ (M |ν̃, εµ) ≤ 1

(r − 1)pµ

(∫
log+ ‖DyT

pµ‖dν̃(y)− χ1(ν̃)

)
+
γ

2
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The above inequality holds for all ergodic components ν̃ of ν and then also for ν by
harmonicity :

1

pµ
hNewT pµ (M |ν, εµ) ≤ 1

(r − 1)pµ

(∫
log+ ‖DyT

pµ‖dν(y)− pµχ1(ν)

)
+
γ

2
(8)

Now we deduce from the choice of δµ that :∫
log+ ‖DyT

pµ‖dν(y)− pµχ1(ν) ≤
∫

log+ ‖DyT
pµ‖dµ(y)− pµχ1(ν) +

(r − 1)γ

4

and then by the choice of pµ we get :

1

pµ

(∫
log+ ‖DyT

pµ‖dν(y)− pµχ1(ν)

)
≤ χ+

1 (µ)− χ+
1 (ν) +

(r − 1)γ

2

Together with Inequality (8) we conclude that

1

pµ
hNewT pµ (M |ν, εµ) ≤ 1

r − 1

(
χ+
1 (µ)− χ+

1 (ν)
)

+ γ.

�

The end of this paper deals with the proof of the Reparametrization Lemma. We first
state the key ingredients. The first one is a combinatorial argument which allows us to
work with subsets of Bowen balls of length n where the defect of multiplicativity of the

norm ‖DT‖‖DTk◦σ‖
‖DTk+1◦σ‖ is fixed for k = 0, ..., n−1. Then we recall Yomdin reparametrization

lemma and a Landau-Kolmogorov inequality which will be used to get Cr estimates of
the Newhouse local entropy. Finally we explain how bound the local volume of a C1
curve by assuming that the derivative of this curve oscillates little.

5. Technical lemmas

This section is devoted to some useful technical lemmas for the proof of the Reparametriza-
tion Lemma presented in the last section.

5.1. Combinatorial Lemma. We first begin with a usual combinatorial lemma which
was already used by T.Downarowicz and A.Maass in [23] and by the author in [11].

Definition 1. Let S ∈ N and n ∈ N. We say that a sequence of n positive integers
Kn := (k1, ..., kn) admits the value S if 1

n

∑n
i=1 ki ≤ S.

The number of sequences of n positive integers admitting the value S is exactly the
binomial coefficient

(
nS
n

)
. When S is large enough this term is exponentially small in

nS. More precisely we have the following lemma (recall that H denotes the function
defined from [1,+∞[ by H(t) = −1

t log(1t )− (1− 1
t ) log(1− 1

t )).

Lemma 4. The logarithm of the number of sequences of n positive integers admitting
the value S is at most nSH(S) + 1.

We refer to [25] (Lemma 16.19) for a proof. In the two next subsections we present
the tools which allow us to get Cr estimates of the symbolic extension entropy function
in contrast with [11] where the author only deals with C2 maps.
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5.2. Estimates à la Yomdin. We recall now the heart of Yomdin theory which es-
timates the ”local differential complexity” of intermediate smooth maps. The proof is
based on a powerful Semi-algebraic Lemma due to M.Gromov [26] (see also [6] for a
complete proof of Gromov’s statement).

Lemma 5. [26] Let k and d be positive integers and let s > 0 be a positive real number.
For any positive real number a > 0 and for any Cs map g : [0, 1]k → Rd with ‖g‖s ≤ a,
there exists a family of real analytic maps F from [0, 1]k to itself such that :

•
⋃
φ∈F φ([0, 1]k) ⊃

{
x ∈ [0, 1]k, ‖g(x)‖ ≤ a

}
,

• ‖φ‖t ≤ 1 for all t = 1, 2, ..., [s] + 1,
• ‖g ◦ φ‖t ≤ a

12e for t = min(1, s), 2..., [s], s,
• ]F ≤ C with a universal constant C depending only on k, d and s.

In fact this is a functional version of Lemma 3.4 of [26] but the proofs are the same.
The constant 1

12e may be replaced by any other universal constant. We choose this one
for convenience of computation in the final proof of the Reparametrization Lemma.

The Semi-algebraic Lemma [26] claims that the statement holds for polynomial func-
tions without any condition on the derivatives, but the constant C may depend on the
degree. Then to prove the general case one approximates the given intermediate smooth
function by its Lagrangian polynomial. The hypothesis on the highest order derivative
makes the approximation good enough to conclude the proof.

To bound the local volume growth of k-disks Y.Yomdin uses Lemma 5 in a dynamical
context. More precisely, given a Cr map T : M → M on a compact manifold M and
a k-disk σ with ‖Tn ◦ σ‖s ≤ 1, he applies it with a = 1, s = r and g = Tn ◦ σ. Then
it follows from (iii) that the k-volume of Tn ◦ σ is universally bounded from above. To

ensure the condition on the s-norm we have to subdivide a general disk in Cste‖DT‖
nk
r

subdisks so that the exponential rate of the local volume growth of a k-disk is bounded

by kR(T )
r replacing if necessary T by an iteration of T .

Here we use Lemma 5 only to reparametrize areas where the oscillation of the deriva-
tive of (Tn◦σ)′ is small compared to its size. Thus we will apply Lemma 5 with s = r−1
to the derivative (Tn ◦σ)′. That’s why we get the factor 1

r−1 (and not 1
r as above) in the

estimates of the Newhouse local entropy given by the Main Proposition. The constant
a will be chosen to be the norm of the derivative of Tn ◦ σ at typical points. Then in
the case of 1-disks an easy geometrical argument presented in Subsection 5.4 allows us
to bound the local volume growth.

5.3. A Landau-Kolmogorov type Inequality. Yomdin’s reparametrization maps are
semi-algebraic and it seems difficult to control from below the size of their derivative.
Therefore we just use affine maps in the proof of the Reparametrization Lemma. The key
ingredient to control the derivatives is then the following classical Landau-Kolmogorov
type inequality due to L.Neder [34].

Lemma 6. [34] Let g : [0, 1]→ Rd be a Cs map with s > 0. Then, there exists a universal
constant C depending only on s and d such that
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∀k = 0, 1, ..., [s], ‖g‖k ≤ C (‖g‖0 + ‖g‖s)

For the sake of completeness we give a short proof of this result, that we borrow from
[19] (Theorem 5.6). In this reference the result is stated for integers 2 ≤ s but it can be
easily extended to the general case 1 < s ∈ R as follows.

Proof : Without loss of generality we may assume d = 1. Let x ∈ [0, 12 ]. From Taylor’s

formula, we have for all 0 ≤ u ≤ 1
2 :

g(x+ u) = g(x) + ug′(x) + ...+
uds−2e

ds− 2e!
g(ds−2e)(x) +

∫ u

0

(u− t)ds−2e

ds− 2e!
f ds−1e(x+ t)dt

= g(x) + ug′(x) + ...+
uds−2e

ds− 2e!
g(ds−2e)(x) +

uds−1e

ds− 1e!
g(ds−1e)(x)

+

∫ u

0

(u− t)ds−2e

ds− 2e!

(
gds−1e(x+ t)− gds−1e(x)

)
dt

As g(ds−1e) is s− ds− 1e Hölder the integral remainder term

R(x, u) =

∫ u

0

(u− t)ds−2e

ds− 2e!

(
gds−1e(x+ t)− gds−1e(x)

)
dt

can be bounded as follows

|R(x, u)| ≤
∫ u

0

(u− t)ds−2ets−ds−1e

ds− 2e!
‖g‖sdt

≤
us
∫ 1
0 (1− x)ds− 2exs−ds−1edx

ds− 2e!
‖g‖sdt

≤ usB(s+ 1− ds− 1e , ds− 1e)‖g‖s
ds− 1e!

(9)

where B denotes the usual beta function. Then we choose arbitrarily real numbers
0 < λ1 < ...λds−1e < 1 and we let A be the Vandermonde matrix given by A :=(
λji

)
1≤i,j≤ds−1e

. We have(
g

(
x+

λi
2

)
− g(x)−R

(
x,
λi
2

))
i

= A

(
g(i)(x)

i!2i

)
i

As the determinant of A is nonzero this system of equations can be solved and we
have according to Inequality (9) for all x ∈ [0, 12 ]∣∣g(i)(x)

∣∣
i!

≤ C (‖g‖0 + ‖g‖s)

where C is a constant depending only on s and on the real numbers λ1 < ... < λds−1e.

We argue similarly for x ∈ [12 , 1] by considering −1
2 ≤ u ≤ 0. This concludes the proof

of the lemma. �
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We will apply this lemma with s = r−1 to the derivative (Tn◦σ)′ with Tn := Tn◦...◦T1
for a sequence (Tn)n of Cr maps defined on the unit ball of Rd and for a smooth 1-disk
σ : [0, 1]→ Rd.

5.4. Curves with small oscillations of the derivative. In the present subsection
we give an alternative strategy to bound the local volume of a C1 curve σ : [0, 1]→ Rd,
that is the length of σ|σ−1(B(0,1)). We assume now that we control the oscillation of the
derivative of σ (instead of the r-derivative in Yomdin’s approach). More precisely we

want the ratio ‖σ
′(t)−σ′(s)‖
‖σ‖1 to be small uniformly in t, s ∈ [0, 1]. Then the following easy

geometrical argument allows us to bound the local volume of σ. This idea was already
exploited in [11] under a slightly different form (Proposition 8 of [11]). In the following
the space Rd is always endowed with the usual euclidean norm ‖‖ and B(x, r) will denote
the ball of radius r centered at x ∈ Rd.

Lemma 7. Let σ : [0, 1]→ Rd be a C1 curve satisfying the following properties

(1) σ([0, 1]) ∩B(0, 1) 6= ∅,
(2) ‖σ′(t)− σ′(s)‖ ≤ ‖σ‖13 for all t, s ∈ [0, 1].

Then, there exists [a, b] ⊂ [0, 1] such that

• σ([0, 1]) ∩B(0, 1) ⊂ σ([a, b]) ⊂ B(0,
√
d),

• (b− a)‖σ‖1 ≤
√

3d.

Proof : Let w ∈ [0, 1] with σ(w) ∈ B(0, 1). The hypothesis (2) on the derivative σ′ of
σ implies that σ′(s) lies in the cone C := {u ∈ Rd, |]u, σ′(w)| ≤ π

6 } for all s ∈ [0, 1].
Indeed we have for all s ∈ [0, 1] :

‖σ′(s)‖ sin
∣∣]σ′(s), σ′(w)

∣∣ ≤ ‖σ′(s)− σ′(w)‖

≤ ‖σ‖1
3

≤ ‖σ′(s)‖
2

where the last inequality follows, with s0 ∈ [0, 1] such that ‖σ′(s0)‖ = ‖σ‖1, from :

‖σ′(s)‖ ≥ ‖σ′(s0)‖ − ‖σ′(s)− σ′(s0)‖

≥ ‖σ‖1 −
1

3
‖σ‖1 =

2

3
‖σ‖1

We consider the cube S of size
√
d containing the unit ball B(0, 1) whose faces are

either orthogonal or parallel to σ′(w). If σ(t) does not belong to S for some t > w then
σ(s) stays out of S for s > t (see the picture above). Similarly if σ(t) is not in S for
some t < w then so does σ(s) for s < t. Therefore if we set a = sup{s ≤ w : σ(s) ∈ S}
and b = inf{s ≥ w : σ(s) ∈ S} we have

σ([0, 1]) ∩B(0, 1) ⊂ σ([a, b]) ⊂ B(0,
√
d)

Finally we check the second item :
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(b− a)‖σ‖1 ≤ 3

2

∫ b

a
‖σ′(u)‖du

≤
√

3

∫ b

a

σ′(u).σ′(w)

‖σ′(w)‖
du

≤
√

3

∥∥∥∥∫ b

a
σ′(u)du

∥∥∥∥
≤
√

3 ‖σ(a)− σ(b)‖ ≤
√

3d

�

6. Reparametrization of (n, ε) Bowen balls : proof of the
Reparametrization Lemma

Let M be a compact manifold of dimension d and let T : M →M be a Cr map with
r > 1. As in Yomdin theory, we consider the local dynamic at one point. We fix a
Riemannian structure ‖‖ on M and we denote by Rinj the radius of injectivity and by
exp : TM(Rinj)→M the exponential map, where TM(r) := {(x, u), u ∈ TxM, ‖u‖x <
r}. We fix R < R′ < Rinj such that T (B(x,R)) ⊂ B(Tx,R′) for all x ∈M .

Let x ∈M and n ∈ N. We consider the map T xn : TTn−1xM(R)→ TTnxM(R′) defined

by T xn = exp−1Tnx ◦ T ◦ expTn−1x. For all ε < R√
d
, we put T xn,ε = ε−1T xn (ε.) : B(0,

√
d) →

TTnxM ' Rd and T xε := (T xn,ε)n∈N. Observe that for all small universal constant A there

exists ε > 0 depending only on maxs=min(2,r),3,...,[r],r ‖DsT‖ such that ‖DsT xn,ε‖ ≤ A−1

for all s = min(2, r), 2, ..., [r], r and n ∈ N.

From now on we consider a general sequence T := (Tn)n∈N of Cr maps with r > 1

from B(0,
√
d) ⊂ Rd to Rd with Tn(0) = 0 for all n ∈ N. By convention we set

T0 = Id|B(0,
√
d). For each n ∈ N we denote by Tn the composition Tn ◦ ... ◦ T0 de-

fined on B(n,
√
d) where B(n, ρ) is the Bowen ball centered at 0 of length n and size

ρ > 0, i.e. B(n, ρ) := {y ∈ Rd : ∀k = 0, ..., n− 1, ‖T ky‖ < ρ}.

We extend the definition of HnT to this framework by defining for all 1-disks σ and for
all real numbers χ > 0, γ > 0 and C > 1 the set :

HnT (σ, χ, γ, C) :=

{
t ∈ [0, 1] ∩ σ−1

(
B(n,

√
d)
)

:

∀1 ≤ i ≤ n, C−1e(χ−γ)i ≤ ‖Dt

(
T i ◦ σ

)
‖ ≤ Ce(χ+γ)i

}
We define now subsets of the Bowen ball B(n+1, 1) where the defect of multiplicativity

of the norm of the composition DTi+1 ◦D(T i ◦ σ) is prescribed at each step 1 ≤ i ≤ n.
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Definition 2. Let T := (Tn)n∈N be a sequence of C1 maps from B(0,
√
d) ⊂ Rd to Rd

and let σ : [0, 1] → Rd be a 1-disk of class C1. Let Kn := (k1, ..., kn) be a sequence of n
positive integers, we denote by H(Kn) the subset of σ−1 (B(n+ 1, 1)) defined by :

(10) H(Kn) :=

{
t ∈ [0, 1] ∩ σ−1 (B(n+ 1, 1)) :

∀1 ≤ i ≤ n,

[
log+

‖Dt(T
i ◦ σ)‖max(1, ‖DT i◦σ(t)Ti+1‖)
‖Dt(T i+1 ◦ σ)‖

]
+ 1 = ki

}
In the next lemma we estimate as in [11] the number of such sets intersectingHnT (σ, χ, γ, C)

by using the combinatorial argument of Lemma 4. We write λ+n := 1
n

∑n−1
i=0 log+ ‖D0Ti‖.

When T is the sequence T xε for some ε > 0 and x ∈ M we have λ+n = λ+n (x, T ) =
1
n

∑n−1
i=0 log+ ‖DT ixT‖. If we assume

(11) ∀n ∈ N ∀z, z′ ∈ B(0,
√
d),

max(‖DzTn‖, 1)

max(‖Dz′Tn‖, 1)
≤ 2

then we have for all y ∈ B(n,
√
d)

∣∣∣∣∣λ+n − 1

n

n−1∑
i=0

log+ ‖DyTi‖

∣∣∣∣∣ ≤ log 2

The condition (11) is fulfilled as soon as the uniform norm of second derivative (or the

r − 1 Hölder norm when r < 2) of each Tn is less than 1/
√
d. Under this condition we

also notice that that for two points t, s lying in H(Kn) and satisfying 1
2‖Dt(T

n ◦ σ)‖ ≤
‖Ds(T

n ◦σ)‖ ≤ 2‖Dt(T
n ◦σ)‖ the derivative of Tn+1 ◦σ at t and s have also almost the

same size. More precisely we have

1

4e
‖Dt(T

n+1 ◦ σ)‖ ≤ ‖Ds(T
n+1 ◦ σ)‖ ≤ 4e‖Dt(T

n+1 ◦ σ)‖(12)

This last remark will be used in the proof of Proposition 2. We state now the appli-
cation of the combinatorial fact of Lemma 4.

Lemma 8. Let χ > 0, 1
3 > γ > 0 and C > 1 and let T := (Tn)n∈N be a sequence of

Cr maps from B(0,
√
d) to Rd such that max(‖DzTn‖,1)

max(‖Dz′Tn‖,1)
≤ 2 for all n ∈ N and for all

z, z′ ∈ B(0,
√
d).

Then there exists an integer N depending only on C such that for all n > N and for
all 1-disks σ : [0, 1] → Rd of class C1 the number of sequences Kn−1 such that H(Kn−1)
has a non empty intersection with HnT (σ, χ, γ, C) is bounded above by

e3n−2e(n−1)(λ
+
n−χ)H([λ+n−χ]+3)
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Proof : Indeed if t ∈ HnT (σ, χ, γ, C), then
∑n−1

i=0 log+ ‖DT i◦σ(t)Ti+1‖ − log ‖Dt(T
n ◦

σ)‖ ≤ n(λ+n + log 2− χ+ γ) + logC. Thus the sequence([
log
‖Dt(T

i ◦ σ)‖max(‖DT i◦σ(t)Ti+1‖, 1)

‖Dt(T i+1 ◦ σ)‖

]
+ 1

)
i=1,...,n−1

admits the value [λ+n − χ] + 3 for n > logC

1−log 2− 1
3

. We apply finally the combinatorial

Lemma 4 to conclude the proof. �

The Reparametrization Lemma follows now directly from Lemma 8 and the following
Proposition 2 applied to the sequences T = T xε for all x ∈M and for ε > 0 small enough.

Proposition 2. Let T := (Tn)n∈N be a sequence of Cr maps with r > 1 from B(0,
√
d) ⊂

Rd to Rd with supn∈N ‖T ′n‖ < +∞ and sup n∈N,
2≤s≤r

‖Tn‖s ≤ A−1 where A is a universal

constant depending only on r and d which we specify later on in the proof.

Then for all integers n, for all 1-disks σ of class Cr with maxs=1,...,[r],r ‖σ‖s ≤ 1 and
for all sequences Kn−1 = (k1, ..., kn−1) of n− 1 positive integers there exists a family Gn
of affine maps φn : [0, 1]→ [0, 1] satisfying the following properties :

(i) ∀φn ∈ Gn, σ ◦ φn([0, 1]) ⊂ B(n+ 1,
√
d),

(ii) ∀φn ∈ Gn, ∀k = 0, ..., n, ∀s = 1,min(2, r), 3, ..., [r], r, ‖T k ◦ σ ◦ φn‖s ≤ 1,
(iii) ∀φn ∈ Gn, ∀min(1, r − 1) ≤ s ≤ r − 1, ‖(Tn ◦ σ)′ ◦ φn‖s ≤ 1

3‖(T
n ◦ σ)′ ◦ φn‖0,

(iv) H(Kn−1) ∩ σ−1 (B(n+ 1, 1)) ⊂
⋃
φn∈Gn φn([0, 1]),

(v) log ]Gn ≤ B +An+ 1
r−1

∑n−1
i=1 ki,

with B depending only on σ.

When d = 1 it follows from the property ‖(Tn ◦σ)′ ◦φn‖min(1,r−1) ≤ 1
3‖(T

n ◦σ)′ ◦φn‖0
that the derivative of Tn ◦ σ does not vanish on the image of each φn, which lies thus in
a monotone branch of Tn ◦σ. Therefore our result recovers the estimates on the number
of monotone branches intersecting H(Kn) obtained in [23].

The main difference with the reparametrization result presented in [11] is the affine
property of the reparametrization charts. Moreover, as these charts are in this paper one
dimensional this makes much easier the proof because the changes of charts φn+1 ◦ φ−1n
are just affine maps of [0, 1]. Observe also that we do not assume any hyperbolicity con-
dition on the reparametrized subset of the Bowen ball contrarily to Proposition 12 of [11].

The conditions on the reparametrization maps are stronger than in Yomdin theory
where only (ii) is required. However we only consider here one dimensional disks -
Yomdin’s approach applies in any dimension - and we do not reparametrized the whole
Bowen ball but only a subset with a fixed growth of the derivative.

Proof : We argue by induction on n. The initial step is easily checked. We assume the
existence of the family Gn and we build Gn+1. Let φn ∈ Gn. We cover the unit interval

into [e
kn
r−1 ] + 1 subintervals of size e−

kn
r−1 . We reparametrize them from [0, 1] by affine
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contractions θn+1. We let ψn+1 := φn ◦ θn+1. From now on we focus on maps ψn+1

whose image intersects the set

H(Kn) ∩ σ−1 (B(n+ 2, 1))

Fix such a map ψn+1 and choose w ∈ [0, 1] such that ψn+1(w) belongs to the previous
set. Let us first prove that

‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1 ≤ 2‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖
To simplify the notations we write T ′n+1 for the differential DTn+1 of Tn+1. Then,

according to the chain rule derivative we have

(Tn+1 ◦ σ)′ ◦ ψn+1 = T ′n+1 ◦ (Tn ◦ σ ◦ ψn+1)× (Tn ◦ σ)′ ◦ ψn+1

By the induction hypothesis (iii) the s-norm of (Tn ◦ σ)′ ◦ ψn+1 for min(1, r − 1) ≤
s ≤ r − 1 satisfies

∥∥(Tn ◦ σ)′ ◦ ψn+1

∥∥
s
≤ 1

3
‖θn+1‖s1‖(Tn ◦ σ)′ ◦ φn‖0

We consider now the first term T ′n+1 ◦ (Tn ◦ σ ◦ ψn+1) of the product. We first recall
that

• for an integer β the β-derivative of a product or a composition of smooth func-
tions is an universal polynomial in the α-derivatives of each term with integers
α = 0, ..., β,
• for a positive real number 0 < β ≤ 1 the β-Hölder norm ‖f×g‖β of a product fg

is less than or equal to ‖f‖0‖g‖β + ‖g‖0‖f‖β while the β-Hölder norm ‖f ◦ g‖β
of a composition f ◦ g is less than or equal to ‖f‖β‖g‖β1 .

Therefore, by the induction hypothesis (ii), we have for all min(1, r − 1) ≤ s ≤ r − 1∥∥T ′n+1 ◦ (Tn ◦ σ ◦ ψn+1)
∥∥
s
≤ C‖θn+1‖s1 sup

min(2,r)≤k≤r
‖Tn+1‖k

where C is a constant depending only on r and d. Finally we get by replacing this
constant by another one which we denote again by C :

‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1 ≤ ‖θn+1‖r−11 ‖‖(Tn ◦ σ)′ ◦ φn‖0

(
1

3
‖T ′n+1 ◦ (Tn ◦ σ ◦ ψn+1) ‖0

+C sup
min(2,r)≤k≤r

‖Tn+1‖k

)

≤ e−kn‖(Tn ◦ σ)′ ◦ φn‖0 max(‖T ′n+1‖0, 1)

(
1

3
+ C sup

min(2,r)≤k≤r
‖Tn+1‖k

)
But it follows from the induction hypothesis (iii) with s = min(1, r − 1) that

‖(Tn ◦ σ)′ ◦ ψn+1(w)‖ ≥ 2

3
‖(Tn ◦ σ)′ ◦ φn‖0
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and we can choose the constant A large enough to ensure firstly

C sup
p∈N,

min(2,r)≤k≤r

‖Tp‖k ≤ CA−1 ≤
1

3

and secondly for all x ∈ B(0,
√
d)

max(‖T ′n+1‖0, 1) ≤ 2 max(1, ‖T ′n+1(x)‖)

Therefore we have

‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1 ≤ 2

3
e−kn‖(Tn ◦ σ)′ ◦ φn‖0 max(‖T ′n+1‖0, 1)

≤ e−kn‖(Tn ◦ σ)′ ◦ ψn+1(w)‖max(‖T ′n+1‖0, 1)

≤ 2e−kn‖(Tn ◦ σ)′ ◦ ψn+1(w)‖max(‖T ′n+1 (Tn ◦ σ ◦ ψn+1(w)) ‖, 1)

and since ψn+1(w) belongs to H(Kn) we obtain

‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1 ≤ 2‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖(13)

Now we apply Lemma 5 to the Cr−1 map (Tn+1 ◦σ)′ ◦ψn+1 with a = 4e‖(Tn+1 ◦σ)′ ◦
ψn+1(w)‖. We let Fψn+1 be the associated family of reparametrization maps. For any
ξn+1 ∈ Fψn+1 we have in particular

‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ξn+1‖min(1,r−1) ≤
1

3
‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖

From now on we only consider the maps ξn+1 ∈ Fψn+1 such that the image of ψn+1 ◦
ξn+1 meets H(Kn). Since ‖(Tn ◦ σ)′ ◦ φn‖min(1,r−1) ≤ 1

3‖(T
n ◦ σ)′ ◦ φn‖0 which as seen

earlier implies ‖(Tn ◦ σ)′ ◦ φn(t)‖ ≤ 2‖(Tn ◦ σ)′ ◦ φn(s)‖ for all t, s ∈ [0, 1] we have by
the inequalities (12)

1

8e
‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖ ≤ ‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ξn+1‖0 ≤ 8e‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖

Let ηn+1 : [0, 1]→ ξn+1([0, 1]) ⊂ [0, 1] be an affine reparametrization of ξn+1([0, 1]). It
follows from the above Landau-Kolmogorov Inequality of Lemma 6 that for all min(1, r−
1) ≤ s ≤ r − 1 we have

‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ηn+1‖s ≤ C
(
‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ηn+1‖0

+‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ηn+1‖r−1
)

≤ C
(
‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ξn+1‖0 + ‖(Tn+1 ◦ σ)′ ◦ ψn+1‖r−1

)
≤ C‖(Tn+1 ◦ σ)′ ◦ ψn+1(w)‖
≤ C‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ηn+1‖0

where the universal constant C may change at each step of the previous sequence of
inequalities.



Symbolic extensions in intermediate smoothness on surfaces 25

By dividing the unit interval into [3C] + 1 subintervals of size < 1/3C and by
reparametrizing them affinely one can assume ‖(Tn+1 ◦ σ)′ ◦ ψn+1 ◦ ηn+1‖s ≤ 1

3‖(T
n+1 ◦

σ)′ ◦ ψn+1 ◦ ηn+1‖0.
Now for any map Tn+1 ◦ σ ◦ ψn+1 ◦ ηn+1 we let [aηn+1 , bηn+1 ] be the subinterval of

[0, 1] given by Lemma 7. We reparametrize ψn+1 ◦ ηn+1|[aηn+1 ,bηn+1 ]
from [0, 1] by an

affine contraction to get new maps that we denote by φn+1, i.e. φn+1(t) := ψn+1 ◦
ηn+1

(
aηn+1 + (bηn+1 − aηn+1)t

)
for all t ∈ [0, 1]. By construction the family Gn+1 of

affine maps φn+1 satisfy properties (i) and (iv). Moreover, since the map ψn+1 ◦ ηn+1

satisfies (iii) then so does φn+1. Therefore, we only need to check (ii) for the family Gn+1

at step n+ 1.
By Lemma 7 we have ‖Tn+1 ◦ σ ◦ φn+1‖1 ≤

√
3d. It only remains to check (ii) for

the family Gn+1 at step n + 1 for the derivative of order min(2, r) ≤ s ≤ r. By using
successively the affine property of φn+1, property (iii) and the above case s = 1, we have
for min(2, r) ≤ s ≤ r :

‖Tn+1 ◦ σ ◦ φn+1‖s = ‖(Tn+1 ◦ σ)′ ◦ φn+1‖s−1 × ‖φn+1‖1

≤ 1

3
‖(Tn+1 ◦ σ)′ ◦ φn+1‖0 × ‖φn+1‖1

≤ 1

3
‖Tn+1 ◦ σ ◦ φn+1‖1 ≤

√
d

3

As previously done we may suppose this last constant to be one, should we multiply

the number of reparametrization maps by

[√
d
3

]
+ 1. This concludes the proof of the

lemma. �
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