
JUMPS OF ENTROPY FOR Cr INTERVAL MAPS

DAVID BURGUET

Abstract. We study the jump of topological entropy for Cr interval
or circle maps. We prove in particular that the topological entropy is

continuous at any f ∈ Cr([0, 1]) with htop(f) > log+ ‖f ′‖∞
r . To this end

we study the continuity of the entropy of the Buzzi-Hofbauer diagrams
associated to Cr interval maps.

1. Introduction

In this paper we study the upper semicontinuity of the (topological)

entropy in the spaces Cr([0, 1]) and Cr(S1) of Cr interval maps and circle

maps endowed with the usual Cr topology where r is a real number with

1 ≤ r ≤ +∞. This problem of upper semicontinuity of the entropy has been

investigated in several previous works in different settings [20][22][30]. Let

us recall the main related results.

Lower semicontinuity of the entropy was proved by M.Misiurewicz and

W.Szlenk [23] for interval maps in the C0 topology and by A.Katok for C1+α

surface diffeomorphisms in the C1 topology [12]. In both cases this follows

from the characterization of entropy by horseshoes which are persistent in

the mentioned topologies. In dimension larger than two the entropy may

not be lower semicontinuous even in the C∞ topology [20].

In [22] M.Misiurewicz investigated upper semicontinuity of the entropy

for continuous piecewise monotone maps of the interval. Let Mr
k([0, 1]) ,

with r = 0 or 1, be the set of Cr interval maps f , which admit a partition

of [0, 1] in k intervals such that f is weakly monotone on each element of

this partition.

We say x ∈ [0, 1] is a turning point of an interval map f when there exist

0 ≤ a < b ≤ x ≤ c < d ≤ 1 such that f is constant on [b, c] and strictly

monotone both on [a, b] and [c, d] but in the opposite sense.

M.Misiurewicz proved upper semicontinuity (and thus continuity) of the

entropy inM0
2([0, 1]) in the C0 topology at all maps at which it is positive.

For all k he also gave a complete description of the possible jumps of entropy

in M0
k([0, 1]) at any f ∈M0

k([0, 1]) \
⋃
l=1,...,k−1M0

l ([0, 1]):
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lim sup

g
C0
→f, g∈M0

k([0,1]

htop(g) = max (htop(f), β(f)) ,

with

β(f) := max{p
q

log 2, there exists a periodic point of f of

period q with p(≤ q) turning points in its orbit}.

Moreover M.Misiurewicz proved continuity of the entropy for the C1

topology for C1 piecewise monotone maps with a uniform number of pieces

[25], i.e. for any positive integer k and for any f ∈M1
k([0, 1]) we have:

lim sup

g
C1
→f, g∈M1

k([0,1]

htop(g) = htop(f),(1.1)

Axiom A interval maps are open and dense in Cr([0, 1]) with r ≥ 1 [13].

We recall that a C1 interval map f is said to be Axiom A when all periodic

points are hyperbolic and when letting B(f) denote the union of basins of

attracting periodic points of f , then [0, 1]\B(f) is a hyperbolic set, that is,

there are constants C > 0 and λ > 1, such that |(fk)′(x)| ≥ Cλk holds for

all x ∈ [0, 1] \B(f) and k ∈ N. By structural stability the entropy is locally

constant, hence continuous, on the set of Axiom A interval maps.

For r > 1 the set Dr([0, 1]) of Cr interval maps with no critical point

flat up to order r is also an open and dense set in Cr([0, 1]) and neither

contains the set of Axiom A maps nor is contained in it. The entropy is also

continuous on Dr([0, 1]). This result is due to Bowen [1] and Misiurewicz-

Szlenk [23] for r = 2 and to K.Iwai [18] for larger r (for the latter the proof

is based on a variant of the kneading theory of Milnor and Thurston). We

see in the appendix that it is in fact a direct consequence of Misiurewicz’s

result (1.1).

Upper semicontinuity was also established by Y.Yomdin for the C∞

topology on any compact manifold M [30]. In fact he bounds the default of

upper semicontinuity of the entropy for Cr maps, 1 ≤ r ≤ +∞, as follows :

lim sup
g
Cr→f

htop(g) ≤ htop(f) +
d ·R(f)

r
,(1.2)

where d is the dimension of M and R(f) := limn
log+ ‖Dfn‖∞

n
(remark that

R is upper semicontinuous in the C1 topology as the limit of a subadditive

sequence of continuous functions, i.e. lim sup
g
C1
→f

R(g) ≤ R(f)).
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Earlier M.Misiurewicz has proved that upper semicontinuity of the en-

tropy fails for diffeomorphisms in the Cr topology with finite r in dimension

larger than or equal to three [24]. For interval maps [7] and for surface dif-

feomorphisms [8] the only known Cr examples at which the entropy is not

upper semicontinuous all satisfy htop(f) < R(f)
r

. We prove in this paper that

it is always the case in dimension one.

Main Theorem. Let f be a Cr interval or circle map with 1 ≤ r ≤ +∞.

Then

lim sup
g
Cr→f

htop(g) ≤ max

(
htop(f),

R(f)

r

)
.

In fact we will prove the stronger statement where the lim sup is taken

over g going to f in the C1 topology and staying in a Cr bounded set

(Yomdin’s inequality (1.2) also holds true in this setting).

Obviously the statement of the Main Theorem for arbitrarily large r

implies the same for r = +∞ and we recover in this last case the upper

semicontinuity of the entropy in the C∞ topology proved by Y.Yomdin.

Note also that the above theorem is trivial for r = 1 as htop(f) is always

less than or equal to d · R(f) for any C1 dynamical system on a compact

manifold of dimension d.

We conjecture that the Main Theorem should also hold true for surface

diffeomorphisms.

Let f be a Cr interval map, 1 < r < +∞, and let p be a repelling periodic

point with period T . Here f may be noninvertible and the unstable manifold

W u(p) of p is then defined as the set of points x, such that there exists a

infinite backward orbit (xk)k≤0 through x, i.e. xk+1 = fT (xk) for any k < 0

and x = xl for some l ≤ 0, such that xk goes to p when k goes to −∞.

We say that f has a homoclinic tangency of order r at p if there exists a

critical point c ∈ [0, 1] flat up to order r, i.e. f(x) − f(c) = o ((x− c)r),
such that c ∈ W u(p) and fk(c) = p for some k > 0. In dimension one the

stable manifold at a repelling periodic point is in general zero dimensional

and a homoclinic tangency may be geometrically interpreted as a point of

intersection of the stable and unstable manifold at which the graph of the

interval map is tangent to the horizontal axis. Observe that a homoclinic

tangency of order r is of order s for any s ≤ r.

Proposition 1.1. Let f be a Cr interval map, 1 < r < +∞, with an

homoclinic tangency of order r at a repelling periodic point p. Then
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lim sup
g
Cr→f

htop(g) ≥ max

(
htop(f),

λ(p)

r

)
,

where λ(p) is the Lyapunov exponent at p.

Note that R(f) is the maximum of the Lyapunov exponents of all in-

variant measures (and zero). Indeed, firstly the Lyapunov exponent λ(µ) of

an f -invariant measure µ satisfies λ(µ) =
∫

log |f ′|dµ =
∫

limn
log |(fn)′|

n
dµ ≤

R(f). For the converse inequality we may assume R(f) > 0. If xn is such

that |(fn)′|(xn) = ‖(fn)′‖∞ > 1, we let νn be the atomic measure given by

νn := 1
n

∑n−1
k=0 δfkxn . Clearly we have

∫
log |f ′|dνn = log |(fn)′|(xn)

n
and then

any limit ν of (νn)n in the weak-∗ topology is f -invariant and satisfies by

upper semicontinuity
∫

log |f ′|dν ≥ limn

∫
log |f ′|dνn = R(f). When λ(p)

achieved this maximum, i.e. λ(p) = R(f), we have then an equality in the

Main Theorem.

Question 1.2. Let f be a discontinuity point of the entropy in Cr([0, 1])

with 1 < r < +∞. Does there exist fn ∈ Cr([0, 1]) with an homoclinic

tangency of order r at a repelling periodic point pfn and going to f in the

Cr topology when n goes to infinity? Do we have moreover

lim sup
g
Cr→f

htop(g) = lim sup
n

λ(pfn)

r
?

The proof of the Main Theorem is based on the study of the Buzzi-

Hofbauer diagram and its behaviour under Cr perturbations. This diagram

is introduced in Section 3. In Section 2 we investigate the upper semicon-

tinuity of the entropy of topological Markov shifts with countable state

sets. The Main Theorem follows then by applying the previous abstract

framework to the Buzzi-Hofbauer diagram and by following the strategy

developed in [9][4] (to prove existence and finiteness of measures of maxi-

mal entropy for Cr interval maps f with htop(f) > R(f)
r

). Finally we sketch

the proof of Proposition 1.1 in the last section, which is based on a classical

construction of arbitrarily small horseshoes near a homoclinic tangency by

Cr perturbations.

2. Continuity of the entropy of topological Markov shifts

with countable state sets

In this section we introduce a notion of convergence for countable Markov

shifts and analyze the case of non upper semicontinuity of Gurevic entropy.
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We first recall standard terminology.

Let G be an oriented graph with a countable set of vertices V (G). For

u, v ∈ V (G), we use the notation u→ v when there is an oriented arrow from

u to v. A closed path at a vertex u is a sequence of vertices (u1, ..., up+1)

with u1 = up+1 = u and with ui → ui+1 for i = 1, ..., p. The integer p is

called the length of the closed path. The period p(G) of the graph G is the

greatest common divisor of the lengths of its closed paths. A closed path

(u1, ..., up+1) at u is said to be a first return at u if ui 6= u for i 6= 1, p+ 1.

Any closed path γ at u is a concatenation of first returns (γi)i=1,...,j at u

and we denote it as follows :

γ := γ1 ∗ γ2 ∗ ...γj.(2.1)

This means that if γ = (u1, u2, ..., up+1) there exist 1 = k1 < ... < ki <

...kj+1 = p+ 1 such that γi = (uki , .., uki+1
) are first returns at u. A graph G

is said to be admissible when for any M ∈ N and for any vertex u ∈ V (G)

the number of closed paths at u of length M is finite.

We let ∆p(G) (resp. ∆u
p(G)) be the set of closed paths of length p in

G (resp. at u). For any positive integer M and for any u ∈ V (G) we let

∆u
p,M(G) be the set of γ ∈ ∆u

p(G) such that all first returns γi at u appear-

ing in the decomposition (2.1) of γ in G have length less than or equal to M .

Consider Σ(G) := {(vn)n ∈ GZ, ∀n ∈ Z, vn → vn+1}. The Markov shift

on G is the shift σ((vn)n) = (vn+1)n on Σ(G). Obviously there is a corre-

spondence between p-periodic points of Σ(G) and closed paths of length p

in G : to any closed path γ = (u1, ..., up+1) in G of length p corresponds the

p-periodic point γ̃ = (vn)n of Σ(G) with vn = un(mod p)+1 for all n.

If F is a subset of vertices of the graph G we write [F ] := {(vn)n ∈ Σ(G), v0 ∈ F}.
We also let M(Σ(G)) be the set of invariant Borel probability measures on

Σ(G).

2.1. A notion of convergence. We consider a set E and a countable

family of subsets E = (EL)L∈N with E =
⋃
LEL.

A family of oriented admissible graphs (Gi)i∈I with vertices in E is said

to be uniform with respect to E when for any L ∈ N we have

sup
i∈I

]V (Gi) ∩ EL < +∞.(2.2)

Definition 2.1. A sequence of graphs (Gn)n∈N uniform with respect to E

converges to a graph G when ∀L ∀M ∃n0 ∀n > n0 we have
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∀un ∈ V (Gn) ∩ EL ∃u ∈ V (G) such that

∀p, ]∆un

p,M(Gn) ≤ ]∆u
p(G).

Clearly the sequence of graphs (Gn)n∈N do not determine G uniquely. For

example, if we add some edges to G, then (Gn)n is also converging to the

resulting graph.

Definition 2.2. Let (Gn)n∈N be a sequence of graphs uniform with respect

to E. We say (ξn)n∈N ∈
∏

n∈NM(Σ(Gn)) goes to infinity when for any

L we have limn ξn([EL]) = 0.

As the cardinality of V (Gn)∩EL is uniformly bounded in n by Inequality

(2.2) the sequence (ξn)n∈N goes to infinity when supun∈V (Gn)∩EL ξn([{un}])
goes to zero when n goes to infinity.

2.2. Entropy and Measure of maximal entropy. The shift space Σ(G)

is a priori not compact. Following Gurevic we define the entropy h(G) as

the supremum of h(σ, ξ) over all σ-invariant probability measures ξ. A σ-

invariant measure ξ is said to be maximal if h(σ, ξ) = h(G). Such a measure

does not always exist. In the following we consider a converging sequence

(Gn)n of graphs with limn h(Gn) > h(G). We do not assume the graphs (Gn)n

or G admit maximal measures.

We will use the following theorem of Gurevic which enables us to work

with finite connected1 graphs.

Theorem 2.3. (Corollary 1.7 in [15]) Let G be an oriented graph with a

countable set of vertices, then

h(G) = sup
G0

h(G0),

where G0 ranges over all finite connected subgraphs of G.

A finite connected graph admits a unique measure of maximal entropy

(the so called Parry measure). We recall now the characterization of Bowen

[2] of the Parry measure : periodic orbits equidistribute along this measure.

Theorem 2.4. [2] Let G0 be a finite connected graph with h(G0) > 0.

Then periodic points equidistribuate along the unique maximal measure µ

of (Σ(G0), σ), i.e.

1

]∆p(G0)

∑
γ∈∆p(G0)

δγ̃
p, p(G0)|p−−−−−→ µ,

1A graph is said to be connected when any pair of vertices may be joined by a path.
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where δγ̃ denotes the Dirac measure at the periodic point γ̃ ∈ Σ(G0).

Finally we recall that the Gurevic entropy of a connected oriented graph

with a countable set of vertices may be written as the exponential growth

in p of the number of closed paths of length p at a given vertex u:

Theorem 2.5. [16] Let G be a connected oriented graph with a countable

set of vertices. Then for any u ∈ V (G),

h(G) = lim
p, p(G)|p

1

p
log ]∆u

p(G).

As the Gurevic entropy of an oriented graph G with a countable set of

vertices is the supremum of the Gurevic entropy of its connected compo-

nents, we always have the following inequality for any u ∈ V (G):

h(G) ≥ lim
p, p(G)|p

1

p
log ]∆u

p(G).(2.3)

2.3. Main proposition.

Proposition 2.6. Let (Gn)n∈N be a sequence of graphs uniform with respect

to E converging to a graph G. Let (G ′n)n∈N be a sequence of finite connected

graphs with G ′n ⊂ Gn for all integers n and limn h(G ′n) > h(G). Let µn ∈
M(Σ(G ′n)) ⊂ M(Σ(Gn)) be the maximal measure of Σ(G ′n). Then (µn)n∈N

goes to infinity.

Proof. Fix L. Let ε > 0. Let δ > 0 with limn h(G ′n) > h(G) + δ. We fix

M large enough so that 1/M < ε/2 and limp e
−εδp/4∑

0≤k≤p/M
(
p
k

)
= 0 (it

is well known that lim supp
log ( p

[αp])
p

goes to zero when α goes to zero). By

convergence of Gn to G we may fix n0 large enough such that for n > n0,

there exists for all un ∈ V (Gn) ∩ EL a vertex u ∈ V (G) such that for all

integers p:

]∆un

p,M(Gn) ≤ ]∆u
p(G).(2.4)

We can also assume that h(G ′n) > h(G) + δ for n > n0. We fix n > n0 and

we prove now µn([{un}]) ≤ ε for any un ∈ V (Gn) ∩ EL.

As [{un}] is a clopen (possibly empty) set in Σ(G ′n) we have by Theorem

2.4:

µn([{un}]) = lim
p, p(G′n)|p

1

]∆p(G ′n)

∑
γ∈∆p(G′n)

δγ̃([{un}]);

= lim
p, p(G′n)|p

]∆un

p (G ′n)

]∆p(G ′n)
.
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The number of returns at un in a closed path γ = (un = u1, u2, ..., up+1 =

un) of length p at un will be denoted by r(γ), i.e. r(γ) := {1 ≤ k ≤ p, uk =

un}. It is also the number of closed paths at un defining the same periodic

orbit in Σ(G ′n). We let ∆̃un

p (G ′n) be the subset of closed paths γ ∈ ∆un

p (G ′n)

such that the minimal period of γ̃ ∈ Σ(G ′n) is equal to p. When γ belongs to

∆̃un

p (G ′n) there are p distinct closed paths in ∆p(G ′n) (in general not at the

vertex un) defining the same periodic orbit in Σ(G ′n). Therefore we have for

any p:

]
{
γ ∈ ∆̃un

p (G ′n), r(γ) < pε
}

]∆p(G ′n)
< ε.

It follows immediately from Theorem 2.5 and h(G ′n) > 0 that

lim
p, p(G′n)|p

]∆un

p (G ′n) \ ∆̃un

p (G ′n)

]∆p(G ′n)
≤ lim

p, p(G′n)|p

∑
q|p, q 6=p ]∆

un

q (G ′n)

]∆p(G ′n)
= 0.

To conclude µn([{un}]) ≤ ε (recall n is fixed), it is enough to show that

for large p the cardinality of the set of closed paths γ of length p at un with

r(γ) ≥ pε is less than ep(h(G′n)−εδ/8), because the cardinality of ∆p(G ′n) grows

exponentially faster in p by Theorem 2.5 and thus we will get finally

µn([{un}]) = lim
p, p(G′n)|p

]
{
γ ∈ ∆̃un

p (G ′n), r(γ) < pε
}

]∆p(G ′n)
≤ ε.

Therefore Proposition 2.6 will be proved once we have shown the follow-

ing claim.

Claim. There exists P (depending on n) such that for all p > P we have

]
{
γ ∈ ∆un

p (G ′n), r(γ) ≥ pε
}
< ep(h(G′n)−εδ/8).

Proof of the Claim : For γ ∈ ∆un

p (G ′n) we let γ− and γ+ be the closed

paths at u obtained by concatenating the first returns at un appearing

in γ of length less than or equal to M and larger than M , respectively

(recall M was fixed earlier and depends only on ε and δ). More precisely

if γ = γ1 ∗ ... ∗ γj is the writing (2.1) of γ in first returns at u, then we

let γ− = γi1 ∗ ... ∗ γik where {i1 < ... < ik} is the set of integers i ∈ [1, j]

such that the length of γi is less than or equal to M and we define similarly

γ+. For γ = (un = u1, u2, ..., up+1 = un) ∈ ∆un

p (G ′n) we also let i(γ) be the

set of integers k ∈ [1, p] such that there exists a first return at uk = un of

length larger than M . Note that the cardinality of i(γ) is less than or equal

to p/M < pε/2.
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We let P lp be the set of all subsets of {1, ..., p} whose cardinality is less

than or equal to l. We consider the map Φ : ∆un

p (G ′n)→
⋃

0≤q≤p ∆un

q,M(Gn)×
∆un

p−q(G ′n)× Pp/Mp which maps any γ ∈ ∆un

p (G ′n) to the triple (γ−, γ+, i(γ)).

Clearly this map is injective. Now for any γ ∈ ∆un

p (G ′n) the length of γ− is

larger than or equal to r(γ) − ]i(γ). By Inequality (2.4) it follows that for

all p:

]
{
γ ∈ ∆un

p (G ′n), r(γ) ≥ pε
}
≤

∑
p≥q>pε/2

]
{

∆un

q,M(Gn)×∆un

p−q(G ′n)× Pp/Mp

}
;

≤
∑

p≥q>pε/2

]∆u
q (G)× ]∆un

p−q(G ′n)× ]Pp/Mp ;

and then for large p (depending on the fixed n) we finally obtain by

Inequality (2.3) :

]
{
γ ∈ ∆un

p (G ′n), r(γ) ≥ pε
}
≤ eεδp/4

∑
p≥q>pε/2

]∆u
q (G)× ]∆un

p−q(G ′n);

≤ eεδp/3
∑

p≥q>pε/2

eqh(G)+(p−q)h(G′n);

< ep(h(G′n)−εδ/8).

�

As previously mentioned this concludes the proof of the Proposition 2.6.

�

3. Proof of the Main Theorem via Buzzi-Hofbauer diagram

3.1. Symbolic dynamics associated to natural partitions and the

Hofbauer Markov Diagram. We consider a C1 interval map f . Let C(f)

be the critical set of f , i.e. the set of vanishing points of the derivative f ′. A

(resp. strictly) monotone branch of f is an open interval I, such that f |I is

monotone (resp. strictly). We say I is a critical monotone branch if I is

a monotone branch (not necessarily strictly) and the two boundary points

of I belong to C(f) ∪ {0, 1}. A (countable) collection P of disjoint critical

monotone branches is called a natural partition of f when the union of

all monotone branches in P covers any strictly monotone branch of f , i.e.

{f ′ 6= 0} ⊂
⋃
I∈P I.

For a natural partition P of f the two-sided symbolic dynamic Σ(f, P )

associated to f is defined as the shift on the closure in P Z (for the product

topology) of the two-sided sequences A = (An)n such that for all n ∈ Z
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and l ∈ N the word An...An+l is admissible, by which we mean that the

intersection
⋂l
k=0 f

−kAn+k is non empty and the f l+1-image of this open

interval is not reduced to a point. The follower set of a finite P -word

Bn...Bn+l is fol(Bn...Bn+l) := {An+lAn+l+1... ∈ PN, s.t. ∃(An) ∈ Σ(f, P )

with An...An+l = Bn...Bn+l}.
Let P be the set of admissible P -words. We consider the following equiv-

alence relation on P . We say A−n...A0 ∼ B−m...B0 if and only if there exist

0 ≤ k ≤ min(m,n) such that :

• A−k...A0 = B−k...B0;

• fol(A−n...A0) = fol(A−k...A0);

• fol(B−m...A0) = fol(B−k...A0).

We endow the quotient space D = D(f, P ) := P/ ∼ with a structure

of oriented graph, known as the Buzzi-Hofbauer diagram, in the following

way [7] : there exists an oriented arrow α → β between two elements α, β

of D if and only if there exists an integer n and A−n...A0A1 ∈ P such that

α ∼ A−n...A0 and β ∼ A−n...A0A1.

The significative part of α ∈ D is the representative A−nα ...A0 of α

with the shortest length. Such a word A−nα ...A0 is also said irreducible, it

is the shortest element in its class. In particular fol(A−nα ...A0) 6= fol(A−nα+1...A0)

when nα > 0.

We let DN be the subset of D generated by elements of
⋃N
k=1 P

k, i.e.

α ∈ DN if and only if there exists 0 ≤ k < N and A−k...A0 ∈ P such

that α ∼ A−k...A0. Thus DN is the subset of D whose significative part has

length less than or equal to N .

3.2. Convergence of the Buzzi-Hofbauer diagram. We let E be the

union
⋃
f,P D(f, P ) over all C1 interval maps f and all natural partitions P

of f . For any α ∈ D(f, P ) we let L(α) be the length of fN
′+1(
⋂

0≤i≤N ′ f
i−N ′A−i)

for some (any) representative A−N ′ ...A0 ∈ P of α. For any (N,K) ∈
(N \ {0})2 we consider the subset EN,K of E defined by

EN,K := {α ∈
⋃
f,P

DN(f, P ), L(α) ≥ 1/K}.

Clearly we have E =
⋃
N,K EN,K .

We analyse now the convergence of the Buzzi-Hofbauer diagrams asso-

ciated to a converging sequence of C1 interval maps. We begin with some

preliminary facts.
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Fact 0: Let F be a C1 bounded set of C1 interval maps. For any N,K,M

there exists Ñ , K̃ depending only on N,K,M, supf∈F ‖f ′‖∞ such that for

any f ∈ F and for any natural partition P of f , any closed path in D(f, P )

of length M at a vertex in EN,K is contained in EÑ,K̃ .

Proof. The proof follows immediately from the two following properties of

the Buzzi-Hofbauer diagram:

• if α ∈ DN(f, P ) and α→ β then β ∈ DN+1(f, P );

• if α→ β then L(β) ≤ ‖f ′‖∞L(α).

Indeed one only needs to put Ñ = N+M and K̃ = [K supf∈F ‖f ′‖M∞ ]+1. �

For any C1 interval map f , any natural partition P of f and any positive

integer m, we denote by P (m) the set of elements of P where |f ′| attains

1/m.

Fact 1: Let F be a C1 bounded set of C1 interval maps. For any N,K

there exists m depending only on N,K, supf∈F ‖f ′‖∞ such that for any

f ∈ F and any natural partition P of f , the set D(f, P )∩EN,K is generated

by
⋃N
k=1 P (m)k.

Proof. Let α ∼ A−N ′ ...A0 withN ′ < N and with the length of fN
′+1(
⋂

0≤i≤N ′ f
i−N ′A−i)

larger than or equal to 1/K. Clearly we have
∏N ′

i=0 supx∈A−i |f
′(x)| ≥ 1/K

and thus we have for any 0 ≤ i ≤ N ′:

sup
x∈A−i

|f ′(x)| ≥ 1

K‖f ′‖N ′∞
.

Therefore it is enough to take m > K max(1, supf∈F ‖f ′‖∞)N . �

From now we fix C1 interval maps f, (fn)n∈N such that (fn)n converges

to f in the C1 topology and we consider natural partitions (Pn)n of (fn)n.

Fact 2: For any positive integer m we have

sup
n
]Pn(m) < +∞.

Proof. Let m ∈ N. Assume supn ]Pn(m) = +∞. Clearly for any fixed n the

set Pn(m) is finite. Then up to extract a subsequence one may find for all

n an element (an, bn) of Pn(m) whose length |an − bn| goes to zero when

n goes to infinity. For any n we let cn ∈ (an, bn) with |f ′n(cn)| ≥ 1/m. We

may assume that an, bn are not boundary points of the unit interval, so

that f ′n(an) = f ′n(bn) = 0. Any accumulation point (a, b, c) of the sequence
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(an, bn, cn) satisfies a = b = c. Moreover as (fn)n is C1 converging to f ,

we have f ′(a) = f ′(b) = 0 and |f ′(c)| ≥ 1/m and we get a contradiction.

Therefore we have supn ]Pn(m) < +∞ for any given m. �

When A is an open interval and n is an integer we denote by An the

element2 of Pn which contains the midpoint of A.

Fact 3: There exists a subsequence (nk)k with the following property.

There is a nondecreasing sequence (Rm)m of finite collections of disjoint

critical monotone branches of f , such that for any positive integer m:

• for all k ≥ m we have Pnk(m) = {Ank , A ∈ Rm};
• for any A ∈ Rm the sequence (Ank)k≥m goes to A in the Hausdorff

topology when k goes to infinity.

Moreover the union R :=
⋃
m∈NRm defines a natural partition of f .

Proof. By a Cantor’s diagonal argument, one may find a subsequence (nk)k

such that for any m the cardinality of (Pnk(m))k is constant for k ≥ m and

that Pnk(m) converges in the Hausdorff topology to a (finite) collection Rm

of critical monotone branches of f . We may also assume Pnk(m) so close to

Rm for any k ≥ m that Pnk(m) is given by the family {Ank , A ∈ Rm}.
Finally observe that for any point x in {f ′ 6= 0} there exist an integer m

and an open neighborhood U of x which is contained in a unique element

of Pnk(m) for large k. By taking the limit in k we get that U is contained

in some A ∈ Rm ⊂ P . Therefore R =
⋃
m∈NRm is a natural partition of

f . �

We let Dn and D be the Buzzi-Hofbauer diagram associated to the natu-

ral partitions Pn and R (given by the above Fact 3) of fn and f respectively.

It follows immediately from Fact 1 and Fact 2 that (Dn)n is uniform with

respect to E = (EN,K)N,K . From Fact 0 and Fact 1 one also easily sees that

all these diagrams are admissible graphs. In fact by Theorem 2.5 admissi-

bility may be deduced more directly from the finiteness of Gurevic entropy

which will follow from the Isomorsphism Theorem (Theorem 3.2).

We prove now the convergence of the Buzzi-Hofbauer diagrams by taking

again a subsequence.

Lemma 3.1. There exists a subsequence (nkl)l such that the Buzzi-Hofbauer

diagrams (Dnkl )l of (fnkl )l converge to the Buzzi-Hofbauer diagram D of f .

2if it exists - when using the notation An we claim it is well defined.
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Proof. Let N,K,M be positive integers. By Facts 0,1,3, there exists an

integer m depending only on N,K,M, supn ‖f ′n‖∞ such that for k ≥ m any

closed path γk of length M ′ ≤M at a vertex αnk ∈ Dnk ∩EN,K is given by

a Pnk-word Ank−N ′ ...A
nk
0 Ank1 ....AnkM ′ with N ′ < N such that

αnk ∼ Ank−N ′ ...A
nk
0 ∼ Ank−N ′ ...A

nk
0 Ank1 ...AnkM ′ ,

where A−N ′ , ..., AM ′ belongs to Rm. Up to extract a subsequence one may

assume by uniform convergence of (fnk)k to f that A−N ′ ...A0 is an admis-

sible word and moreover A−N ′ ...A0A1...AM ′ ∼ A−N ′ ...A0. This last relation

defines a closed path γ of length M ′ at the class α of A−N ′ ...A0 in D. The

function φk : ∆αnk
M (Dnk) → ∆α

M(D) mapping γk to γ may be extended to

∆αnk
p,M(Dnk) for all p by concatening the φk images of the first returns at αnk

appearing in the decomposition of a closed path in ∆αnk
p,M(Dnk). The resulting

map, which takes value in ∆α
p (D), is injective. Indeed, as seen above, any

closed path γk in ∆αnk
p,M(Dnk) is given by a Pnk-word Ank−N ′ ...A

nk
0 Ank1 ....Ankp

with N ′ < N and with A−N ′ , ..., Ap ∈ Rm such that

αnk ∼ Ank−N ′ ...A
nk
0 ∼ Ank−N ′ ...A

nk
0 Ank1 ...Ankp .

Then φk(γ) is the closed path in D of length p at α whose qth term is the

class of A−N ′ ...A0A1...Aq−1 in D for any 1 ≤ q ≤ p. Since these classes

allows us to determine Aq for 1 ≤ q ≤ p two closed paths in ∆αnk
p,M with the

same image under φk coincide. It follows that

]∆αnk
p,M(Dnk) ≤ ]∆α

p (D).

Finally by using a Cantor’s diagonal argument we may extract a subse-

quence (nkl)l such that this holds true for any N,K,M whenever l is large

enough, i.e. the Buzzi-Hofbauer diagrams (Dnkl )l of (fnkl )l converge to the

Buzzi-Hofbauer diagram D of f .

�

3.3. Isomorphism Theorem. Let f be a C1 interval map and P be a

natural partition of f . The symbolic dynamics extends the dynamics on

the interval as follows. For any A = (An)n∈Z ∈ Σ(f, P ) we let π0(A) :=⋂
k∈N
⋂k
l=0 f

−lAl. Since f is monotone on each element of P the set
⋂k
l=0 f

−lAl

is an interval for all k ∈ N. In particular π0(A) is a point or a compact non

trivial interval ; but this last possibility occurs only for a countable set of

elements (An)n∈N. Therefore there is a Borel subset of Σ(f, P ) with full µ-

measure for any σ-invariant measure µ with positive entropy such that the

restriction of π0 to this subset defines a Borel map (in the following this

Borel map will be also denoted by π0).
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We also consider the projection π1 : Σ(D)→ Σ(f, P ) defined by π1((αn)n) =

Bn where Bn is the last letter of the word αn.

We recall now the Isomorphism Theorem for C1+α interval maps obtained

in [4] based on previous works of J.Buzzi [7] :

Theorem 3.2. [4] Let f be a Cr map of the interval with r > 1. The Borel

map π := π0 ◦π1 : Σ(D)→ [0, 1] induces a bijection, preserving the entropy,

between ergodic invariant measures with positive entropy of (Σ(D), σ) and

([0, 1], f).

Remark 3.3. In [4], [7] the authors consider the particular natural parti-

tion given by the set of connected components of [0, 1] \D(f), where D(f)

is the set of points which do not belong to the interior of any strictly mono-

tone branch of f . However the proof of the Isomorphism Theorem applies

straightforwardly to general natural partitions. Here we need to work with

general natural partitions because Lemma 3.1 is false for the above partic-

ular choice used in [4], [7].

3.4. Bound of the entropy at infinity. We first prove the following

refinement of Proposition 3 of [9] :

Lemma 3.4. Let (fn)n∈N be a sequence of C1 interval maps converging in

the C1 topology. For any integer n we let Dn be the Buzzi-Hofbauer diagram

associated to some natural partition Pn of fn.

Let (ξn)n be a sequence of ergodic σ-invariant measures on Σ(Dn) such

that :

• h(σ, ξn) > 0 for all n;

• (ξn)n goes to infinity.

Then for all N ∈ N we have limn ξn([DnN ]) = 0.

Proof. For any N, n,m we denote by DnN,m the subset of DnN given by irre-

ducible Pn-words A−N ′ ...A0 (note that N ′ < N) with

sup
x∈

⋂N′
i=0 f

−i
n A−N′+i

|(fN ′+1
n )′(x)| > 1/m.

Obviously DnN,m ⊂ DnN,m′ for m′ > m. We fix now N .

Step 1: ξn([DnN \ DnN,m])
m→+∞−−−−→ 0 uniformly in n.

Assume by contradiction that for infinitely many m there exists n = n(m)

with ξn([DnN \ DnN,m]) > a > 0. Let µn = π∗ξn the induced fn-invariant

ergodic measure on [0, 1] and λµn its Lyapunov exponent. By the ergodic
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thereom one easily gets that

λµn ≤ log+ ‖f ′n‖∞ −
a logm

2N
.

Therefore by choosing m > max(1, supn ‖f ′n‖∞)2N/a we conclude that the

Lyapunov exponent of µn is negative and thus its entropy is zero by Ruelle’s

Inequality, h(f, µn) ≤ max(λµn , 0). We get a contradiction with our first as-

sumption h(σ, ξn) > 0 as we have by the Isomorphism Theorem (Theorem

3.3), h(f, µn) = h(σ, ξn).

Step 2: for all m there exists K with
⋃
nDnN,m ⊂ EN,K .

Observe that for any irreducible Pn word A−N ′ ...A0 representing α ∈ DnN,m
there exists z ∈

⋂N ′

i=0 f
−i
n A−N ′+i with |(fN ′+1

n )′(z)| > 1/m. There is a pos-

itive integer K ′ such that |(fN ′+1
n )′(t)| > 1/2m for any t in the 1/K ′-

neighborhood of z in [0, 1] (in particular this neighborhood is entirely con-

tained in
⋂N ′

i=0 f
−i
n A−N ′+i). We may also choose K ′ independent of z by

uniform continuity of fn but also of n by C1 convergence of (fn)n. Conse-

quently L(α) ≥ 1
2mK′

and thus α belongs to EN,K for K = 2mK ′.

Step 3: Conclusion.

Let ε > 0. By Step 1 we may find m so large that for all n we have ξn([DnN \
DnN,m]) < ε/2. Then there exists by Step 2 an integer K = K(m) such that

for all n we have DnN,m ⊂ EN,K and therefore we obtain for all n:

ξn([DnN \ EN,K ]) ≤ ξn([DnN \ DnN,m]) < ε/2.

Finally, as (ξn)n goes to infinity, there exists n0 such that for all n > n0 we

have

ξn([EN,K ]) < ε/2

and thus

ξn([DnN ]) ≤ ξn([DnN \ EN,K ]) + ξn([EN,K ]) < ε.

�

The entropy of a sequence of ergodic σ-invariant measures going to in-

finity may be bounded from above as follows.

Proposition 3.5. Let (fn)n∈N be a sequence of C1 interval maps converging

in the C1 topology with supn ‖(fn)(r)‖∞ < ∞. For any integer n we let Dn

be the Buzzi-Hofbauer diagram associated to some natural partition Pn of

fn.

Let (ξn)n be a sequence of ergodic σ-invariant measures on Σ(Dn) such

that limn ξn([DnN ]) = 0 for all N ∈ N.
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Then we have for any weak limit µ := limk µnk of (µn)n := (π∗ξn)n :

lim sup
k

h(fnk , µnk) ≤
∫

log+ |f ′|dµ
r

.

Proposition 3.5 is shown by following straightforwardly the proof of

Proposition 4 in [4]. In [4] the statement concerns a single map, but all

the proof works when considering a C1-converging sequence of Cr maps

with uniformly bounded r-derivative. Let us sketch the main ideas of this

generalization.

For any A ∈ Σ(fn, Pn) and any N ∈ N we let rN(A) be the least integer

m ∈ N ∪ {+∞} with m > N such that fol(A−m−1...A0) 6= fol(A−m...A0).

This last inequality implies that there exist a point y ∈ ∂A−m−1 which

shadows the piece of orbit A−m...A0, i.e. fn(y) ∈
⋂n
l=0 f

−l
n A−m+l.

Then, a sequence (νn)n ∈
∏

mM(Σ(fn, Pn), σ) is said to satisfy the

shadowing property when for all integersN we have limn νn(rN < +∞) =

1. It follows easily from the definitions that if (ξn)n is a sequence of σ-

invariant ergodic measures on Σ(Dn) with limn ξn([DnN ]) = 0, then the se-

quence (π∗1ξn)n satisfy the shadowing property.

We consider now a sequence (νn)n ∈
∏

mM(Σ(fn, Pn), σ) satisfying the

shadowing property and we explain how to bound the entropy of (µn)n :=

(π∗0νn)n. For any N , a typical orbit of length L for µn with n large enough

may be shadowed at almost any time by at most k ≤ L
N

critical points of

fn on disjoint orbit segments of length larger than N . Then by using com-

binatorial arguments one may bound the entropy of µn by the exponential

growth rate in L of the number of such possible k-uples of critical points.

This last rate may be bounded in terms of the Lyapunov exponent of µn as

follows. If at a starting time of an orbit segment the |f ′n|-value of our µn-

typical orbit is l then the number of possible shadowing points for this piece

is less than C‖(fn)(r)‖∞l
1
r−1 with C = C(r) depending only on r. Indeed

for a Cr interval map g the number of critical strictly monotone branches

where |g′| exceeds the value l is at most C(r)‖g(r)‖∞l
1
r−1 , see Lemma 4.1 of

[11]. Then as supn ‖(fn)(r)‖∞ < +∞ there exists for any ε > 0 an integer

nε such that for n > nε we have h(fn, µn) .
∫
− log− |f ′n|dµn

r−1
. Together with

Ruelle inequality, h(fn, µn) ≤ max(
∫

log |f ′n|dµn, 0), we get for n > nε (we

may assume h(µn) > 0)
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h(fn, µn) ≤
∫
− log |f ′n|dµn +

∫
log+ |f ′n|dµn

r − 1
+ ε;

≤
−h(fn, µn) +

∫
log+ |f ′n|dµn

r − 1
= ε.

and thus for n > nε we get

h(fn, µn) ≤
∫

log+ |f ′n|dµn
r

+ ε.

We conclude by continuity of the integral in the right member that for any

limit µ := limk µnk of (µn)n:

lim sup
k

h(fnk , µnk) ≤
∫

log+ |f ′|dµ
r

.

3.5. Proof of the Main Theorem for interval maps. We can now prove

the Main theorem for interval maps. Let (fn)n be a sequence of Cr interval

maps converging in the C1 topology to f with supn ‖(fn)(r)‖∞ < +∞ such

that lim supn htop(fn) > htop(f). We may assume that limn htop(fn) exists

and is finite since we have lim supn htop(fn) ≤ lim supnR(fn) ≤ R(f). Let

(Pn)n be natural partitions of (fn)n. By Lemma 3.2 and Lemma 3.1 we can

suppose by taking a subsequence that there exists a natural partition P of

f such that the Buzzi-Hofbauer diagram Dn associated to (fn, Pn) converge

to the Buzzi-Hofbauer diagram D associated to (f, P ). According to the

Isomorphism Theorem (Theorem 3.2) we have h(Dn) = htop(fn) and h(D) =

htop(f). Also by Theorem 2.3 one may find finite connected subgraphs Gn ⊂
Dn with limn h(Dn) = limn h(Gn) > h(D). The Main Proposition claims

then that the measure ξn of maximal entropy of Gn goes to infinity when

n goes to infinity. Then by Lemma 3.4 we get limn ξn([DnN ]) = 0 for all N

and thus by Proposition 3.5 we have for any weak limit µ ∈ M(f, [0, 1]) of

(µn)n = (π∗ξn):

lim
n
htop(fn) = lim

n
h(Dn);

= lim
n
h(Gn);

= lim
n
h(ξn);

= lim
n
h(µn);

≤
∫

log+ |f ′|dµ
r

;

≤ log+ ‖f ′‖∞
r

.
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Now if m is an integer so large that R(f) ' log+ ‖(fm)′‖∞
m

, we may apply

the previous result to the sequence fmn and to fm since we have

lim
n
htop(f

m
n ) = m lim

n
htop(fn);

> mhtop(f);

= htop(f
m).

Then we get

lim
n
htop(fn) = lim

n

htop(f
m
n )

m
;

≤ log+ ‖(fm)′‖∞
mr

;

.
R(f)

r
.

This concludes the proof of the Main Theorem for interval maps.

3.6. Proof of the Main Theorem for circle maps. For circle maps the

theorem is proved by reduction to the case of interval maps as follows. In

the assumptions of the Main Theorem one may assume that f has positive

entropy. Indeed when f has zero entropy the inequality in the Main Theo-

rem is just given by Yomdin’s inequality (1.2). It is well known that a circle

map with positive entropy has an horseshoe [19], in particular there exist a

positive integer k and an interval J 6= S1 such that the closure of J is con-

tained in the fk-image of the interior of J . This still holds for maps g which

are C0-close to f . For n large enough we let pn ∈ J be a k-periodic point of

fn. By extracting a subsequence we may assume that (pn)n is converging to

a k-periodic point p of f . Then the interval maps f̃p and f̃pn, obtained from

fp and fpn by blowing up the circle at the fixed point p and pn respectively,

are Cr interval maps such that (f̃pn)n is converging to f̃p in the Cr topology.

By applying the Main Theorem for interval maps we get

lim sup
n

htop(f̃
p
n) ≤ max

(
htop(f̃p),

R(f̃p)

r

)
It is easily checked that

htop(f̃
p
n) = htop(f

p
n) = phtop(fn);

htop(f̃p) = htop(f
p) = phtop(f);

R(f̃p) = R(fp) = pR(f);

so that
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lim sup
n

htop(fn) ≤ max

(
htop(f),

R(f)

r

)
.

4. Proof of Proposition 1.1

4.1. Discontinuity at maps with homoclinic tangencies of order r.

We sketch now the proof of Proposition 1.1. Similar examples have been

already built in [8] [27] [3] and we refer to this paper for details on the

construction. Let f be a Cr interval map with an homoclinic tangency of

order r at a repelling fixed point p. We denote by c the critical point flat

up to order r in the unstable manifold of p with fk(c) = p for some k > 0.

We perturb f only on a small neighborhood ]c − δ, c + δ[ by letting the

perturbation g be a sinusoidal of the form g(x) = a sin(Nx/δ) + f(c). We

may choose a = Cδ|f ′(p)|−l for some constant C to get a N -horseshoe for

f l with l� | log δ|. The entropy of this horseshoe is given by logN
l

whereas

to ensure the Cr closeness one may take aN r = δr/l. In this way we obtain

gl going to f in the Cr topology such that

htop(gl) ≥
logN

l
;

≥ log(δr/al)

rl
;

≥
log
(
δr−1|f ′(p)|l/Cl

)
rl

;

≥ λ(p)

r
+ o(1/l).

By lower semicontinuity of the entropy we finally get:

lim sup
l

htop(gl) ≥ max

(
htop(f),

λ(p)

r

)
.

Appendix

As a consequence of Misiurewicz’s result (1.1) we give here a short proof

of the following theorem.

Theorem. [18] For any real number r > 1, the entropy is continuous on

the set Dr([0, 1]) of Cr interval maps with no critical point flat up to order

r.

Proof. If f belongs to Dr([0, 1]) then its critical set is finite and thus f

is piecewise monotone. In fact for any Cr bounded set V there exist an
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integer k and a C1 neighborhood U of f such that any g ∈ U ∩ V belongs

to Mk([0, 1]):

Claim. Let r > 1, R > 0 and f ∈ Dr([0, 1]). There exist ε0 > 0 and a C1

neighborhood U of f such that any map g ∈ U ∩Cr([0, 1]) with ‖g(r)‖∞ ≤ R

has at most r − 1 critical points in any ball of radius ε0, in particular g is

in M1
k([0, 1]) with k = [r/ε0] + 1.

Proof of the Claim. Arguing by contradiction we assume that for some r >

1, R > 0, there exist f ∈ Dr([0, 1]) such that for any δ > 0 and for any ε > 0

there exists a Cr map gδ,ε which is δ C1-close to f with ‖(gδ,ε)(r)‖∞ < R

and with r critical points of gδ,ε in an interval Iδ,ε of length ε. Let x be

an accumulation point of the intervals (Iδ,ε)δ,ε when δ and ε go to zero. In

particular for some arbitrarily small δ and ε the length of gδ,ε(I) for any

I ⊃ Iδ,ε has length less than R|I|r by Lemma 3.2 of [5]. Thus as (gδ,ε)δ

converges uniformly to f when δ goes to zero, it also holds true for f(I) for

any open interval I containing x, which easily implies that f has a critical

point flat up to order r at x and thus contradict our assumption. �

Finally it follows from (1.1) that the entropy is continuous at f ∈
Dr([0, 1]) for the C1 topology in any Cr bounded set (in particular for

the Cr topology).

�
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