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(X ,T ) a topological system, i.e.

(X , d) a compact metrique space,

T : X → X continuous.

Dynamical ball : x ∈ X , n ∈ N ∪ {∞}, ε > 0,

BT (x , n, ε) =
⋂

0≤k<n

T−kB(T kx , ε)

with B(x , ε) = {y , d(x , y) < δ}.
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Subshift (Y ,S) :

Y closed shift subset of {1, ...,K}Z for K ∈ N∗
invariant by the shift S .

With the metric d defined as d(x , y) =
∑

i∈Z
δxi=yi

3i

BS(x , n, 1) := {y ∈ Y , yi = xi for 0 ≤ i < n}.
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Topological entropy :

htop(T , ε) := lim sup
n

1

n
min{]C ,

⋃
x∈C

B(x , n, ε) = X},

htop(T ) = lim
ε→0

htop(T , ε).

For the K -full shift ({1, ...,K}Z,S)

htop(S) = logK .
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(X ,B,T , µ) a measure preserving system
P finite Borel partition

Hµ(P) = −
∑
A∈P

µ(A) logµ(A)

The entropy h(µ,P) of µ w.r.t. P :

h(µ,P) = inf
n

1

n
Hµ(

∨
k=0,...,n−1

T−kP),

= lim
n

1

n
Hµ(

∨
k=0,...,n−1

T−kP).

The K-S entropy h(µ) of µ :

h(µ) = sup
P

h(µ,P).
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(X ,T ) topological system

M(X ,T ) := {µ mesure de proba T-invariante}
is a compact convex set with the set Me(X ,T ) of ergodic

measures as extremal points.

Ergodic decomposition : M(X ,T ) is a Choquet simplex, i.e.

∀µ∃Mµ supported on Me(X ,T ) s.t.

f (µ) =

∫
f (ν)dMµ(ν) for all affine real continuous f .

Any Choquet simplex may be realized as the set of invariant
measures of a dynamical system.
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Harmonicity :

h(µ) =

∫
h(ν)dMµ(ν).

Variational principle :

htop(f ) = sup
µ∈M(X ,T )

h(µ).

Entropy functions have been completely characterized for
topological systems.
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(X ,T ) invertible topological system

Two sided dynamical ball :
x ∈ X , n ∈ N ∪ {∞}, ε > 0,

B∗T (x , n, ε) =
⋂

0≤|k|<n

T−kB(T kx , ε)

(X ,T ) strongly expansive :

∀x ∈ X , B∗T (x , ε,∞) = {x}.

Example : Subshifts.

The dimension of X is finite, even 0 when T is minimal.

C 1 robust expansive systems are the Axiom A systems.
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(X ,T ) topological system

Topological Tail entropy :

h∗(T , ε) := sup
x∈X

htop(B
(∗)
T (x , ε,∞))

h∗(T ) := lim
ε→0

h∗(T , ε).

Measure theoretical Tail entropy : X zero-dimensional
(Pk)k sequence of clopen partitions with diameters going to 0

u(µ) = lim
k

lim sup
ν→µ

[h(ν)− h(ν,Pk)]

Tail variational principle :

h∗(T ) = sup
µ∈M(X ,T )

u(µ)

Preuve
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∀n ∈ N,

Pern(X ,T ) := {x , T nx = x and Tmx 6= x for 0 < m < n}.
Periodic growth :

p(T ) := lim sup
n

1

n
log ]Pern(X ,T ).

Local periodic growth :

p∗(T ) := lim
k

lim sup
n

1

n
sup

An∈Pn
k

log ]Pern(X ,T ) ∩ An.

Measure theoretical local periodic growth :

p∗(µ) := lim
k

lim sup
ν→µ, ν(Per)=1

∫
p∗k(x)dν(x)

with p∗k(x) =
1

n
log ]Pern ∩ Pn

k (x) for x ∈ Pern
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Asymptotical h-expansiveness :

h∗(T ) = 0.

C 1 robustly h-expansive are the diffeos C 1 far from homoclinic
tangencies.

Examples : C∞ maps !

Asymptotical p-expansiveness :

p∗(T ) = 0.

Examples : C∞ maps ? No, but almost (at least in low dimensions).
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lim sup
ν→µ

[h(ν)− h(µ)] ≤ u(µ).

U.s.c. of the entropy function for (X ,T ) a. h-expansive :

h :M(X ,T )→ R is u.s.c. and thus

Mmax(T ) = {µ ∈M(X ,T ), h(µ) = htop(T )}

is a non empty compact set.

12/21 David Burguet Entropy
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p(T ) ≤ htop(T ) + p∗(T ).

Equidistribution of periodic points for (X ,T ) a. p-expansive :

Assume also +∞ > p(T ) ≥ htop(T ) then

p(T ) = htop(T ),

any weak limit of ( 1
]Pern(X ,T )

∑
x∈Pern(X ,T ) δx)n is a measure

of maximal entropy.

Preuve

13/21 David Burguet Entropy
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Zero-dimensional extension
Generators
Entropy theory of symbolic extension
Example with large symbolic extension entropy

(X ,T ) topological system

Zero-dimensional extension :
(Y ,S) zero-dim. system with π : Y → X

π surjective,

π ◦ S = T ◦ π.

Principal zero-dimensional extension :
Zero dimensional extension π(Y ,S)→ (X ,T ) s.t.
∀µ ∈M(Y ,S), hT (πµ) = hS(µ).

Every topological system admits a zero-dimensional principal
extension.

14/21 David Burguet Entropy
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Symbolic Extension :
(Y ,S) subshift with π : Y → X

π surjective,

π ◦ S = T ◦ π.

=⇒ htop(T ) < +∞

Principal symbolic extension :
Symbolic extension π(Y , S)→ (X ,T ) s.t.
∀µ ∈M(Y ,S), hT (πµ) = hS(µ).

=⇒ h :M(X ,T )→ R is u.s.c.
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Zero-dimensional extension
Generators
Entropy theory of symbolic extension
Example with large symbolic extension entropy

Ergodic generators : (X ,B,T , µ) be a measure preserving system
a partition P of X is an ergodic generator when ∨

|k|<n

T kP


n

generates (up to null sets) B

Uniform generators : (X ,T ) topological invertible system
a Borel partition P of X is a uniform generator when

diam(
∨
|k|<n

T kP)
n−→ 0.
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Zero-dimensional extension
Generators
Entropy theory of symbolic extension
Example with large symbolic extension entropy

Existence of finite ergodic generators :

An ergodic m.p. system (X ,B,T , µ) has a generator
⇐⇒

h(µ) < +∞

Existence of finite uniform generator : For a 0-dim top. (X ,T )

clopen uniform generators
⇐⇒

strongly expansive,

0-boundary uniform generators
⇐⇒

a. h and a. p expansive, Preuve

(Borel) uniform generator
⇐⇒

symbolic extension and p(T ) <∞.
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Zero-dimensional extension
Generators
Entropy theory of symbolic extension
Example with large symbolic extension entropy

Entropy function w.r.t. a symbolic extension :
π : (Y , S)→ (X ,T ),

hπ :M(X ,T ) → R
µ 7→ sup

ν, πν=µ
hS(ν).

Supperenveloppe : (X ,T ) 0-dim. system,
(Pk)k sequence of clopen partitions with diameters going to 0. An

u.s.c. affine function E :M(X ,T )→ R is a superenvelope when

∀δ > 0, ∀µ ∈M(X ,T ),

∃kµ and Vµ neighborhood of µ s.t.

∀ν ∈ Vµ, h(ν)− hkµ(ν) ≤ E (µ)− E (ν) + δ
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Zero-dimensional extension
Generators
Entropy theory of symbolic extension
Example with large symbolic extension entropy

Symbolic extension theorem :

E + hhgm = hπ for some symbolic extension π

⇐⇒

E is a superenvelope.

Preuve sens facile
Embedding theorem :

E = hπ for some symbolic extension π

⇐⇒

E is a superenvelope with E ≥ p∗.

Symbolic extension entropy :

hs.e. = inf
E superenvelope

E .

19/21 David Burguet Entropy
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Zero-dimensional extension
Generators
Entropy theory of symbolic extension
Example with large symbolic extension entropy

S.e. operator : S(X ,T ) the set of u.s.c. real nonnegative function
on M(X ,T ),
f̃ the u.s.c. envelope of f and hk = h(.,Pk).

T : S(X ,T ) → R+,

f 7→ lim
k

˜f + h − hk .

The superenvelopes are the fixed point of the nondecreasing
operator T of the complete lattice given by S(X ,T ) ∪ {∞}. The

function hs.e. is the smallest fixed point of T and it is the
transfinite limit of (T α(0))α. Moreover u = T (0).

Order of accumulation : smallest countable ordinal with
T α(0) = hs.e..

Any countable ordinal is realized by a topological system.
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Order of accumulation : smallest countable ordinal with
T α(0) = hs.e..

Any countable ordinal is realized by a topological system.
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Example with large hs.e. : Collections of periodic measures (Pk)k
and collection of ergodic measures (Mk)k s.t. :

h(µ) > ak > 0 for all µ ∈Mk ,

for all k any µ ∈Mk is a weak-* limit of periodic measures in
Pk ,

for all k any µ ∈ Pk is a weak-* limit of measures in Mk+1,

then ∀µ ∈M0, hs.e.(µ) ≥
∑
k

ak .
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