> Lecture 1 and 2: Modern entropy theory of topological systems

> > David Burguet

13th February 2017

(X, T) a topological system, i.e.

- (X, d) a compact metrique space,
- $T: X \to X$ continuous.

Dynamical ball : $x \in X$, $n \in \mathbb{N} \cup \{\infty\}$, $\epsilon > 0$,

$$B_T(x, n, \epsilon) = \bigcap_{0 \le k < n} T^{-k} B(T^k x, \epsilon)$$

with $B(x,\epsilon) = \{y, d(x,y) < \delta\}.$

(X, T) a topological system, i.e.

- (X, d) a compact metrique space,
- $T: X \to X$ continuous.

Dynamical ball : $x \in X$, $n \in \mathbb{N} \cup \{\infty\}$, $\epsilon > 0$,

$$B_T(x, n, \epsilon) = \bigcap_{0 \le k < n} T^{-k} B(T^k x, \epsilon)$$

with $B(x,\epsilon) = \{y, d(x,y) < \delta\}.$

Topological entropy Measure theoretical entropy General properties of the entropy function

Subshift (Y, S):

Y closed shift subset of $\{1, ..., K\}^{\mathbb{Z}}$ for $K \in \mathbb{N}^*$ invariant by the shift S.

With the metric *d* defined as $d(x, y) = \sum_{i \in \mathbb{Z}} \frac{\delta_{x_i = y_i}}{3^i}$

 $B_S(x, n, 1) := \{y \in Y, y_i = x_i \text{ for } 0 \le i < n\}.$

< A > < 3

Topological entropy Measure theoretical entropy General properties of the entropy function

Subshift (Y, S):

Y closed shift subset of $\{1, ..., K\}^{\mathbb{Z}}$ for $K \in \mathbb{N}^*$ invariant by the shift S.

With the metric *d* defined as $d(x, y) = \sum_{i \in \mathbb{Z}} \frac{\delta_{x_i = y_i}}{3^i}$

$$B_S(x, n, 1) := \{y \in Y, y_i = x_i \text{ for } 0 \le i < n\}.$$

Topological entropy Measure theoretical entropy General properties of the entropy function

(日)

Topological entropy :

$$h_{top}(T,\epsilon) := \limsup_{n} \frac{1}{n} \min\{ \sharp C, \bigcup_{x \in C} B(x, n, \epsilon) = X \},$$

$$h_{top}(T) = \lim_{\epsilon \to 0} h_{top}(T, \epsilon).$$

For the *K*-full shift $(\{1, ..., K\}^{\mathbb{Z}}, S)$

 $h_{top}(S) = \log K.$

Topological entropy Measure theoretical entropy General properties of the entropy function

Topological entropy :

$$h_{top}(T,\epsilon) := \limsup_{n} \frac{1}{n} \min\{ \sharp C, \bigcup_{x \in C} B(x, n, \epsilon) = X \},$$

$$h_{top}(T) = \lim_{\epsilon \to 0} h_{top}(T, \epsilon).$$

For the K-full shift $(\{1,...,K\}^{\mathbb{Z}},S)$

 $h_{top}(S) = \log K.$

- - ◆ 同 ▶ - ◆ 目 ▶

$(X, \mathcal{B}, \mathcal{T}, \mu)$ a measure preserving system P finite Borel partition

$$H_\mu(P) = -\sum_{A\in P} \mu(A) \log \mu(A)$$

The entropy $h(\mu, P)$ of μ w.r.t. P :

$$h(\mu, P) = \inf_{n} \frac{1}{n} H_{\mu}(\bigvee_{k=0,\dots,n-1} T^{-k} P),$$

=
$$\lim_{n} \frac{1}{n} H_{\mu}(\bigvee_{k=0,\dots,n-1} T^{-k} P).$$

The K-S entropy $h(\mu)$ of μ :

$$h(\mu) = \sup_{P} h(\mu, P).$$

$(X, \mathcal{B}, \mathcal{T}, \mu)$ a measure preserving system P finite Borel partition

$$H_{\mu}(P) = -\sum_{A \in P} \mu(A) \log \mu(A)$$

The entropy $h(\mu, P)$ of μ w.r.t. P :

$$h(\mu, P) = \inf_{n} \frac{1}{n} H_{\mu}(\bigvee_{k=0,...,n-1} T^{-k} P),$$

=
$$\lim_{n} \frac{1}{n} H_{\mu}(\bigvee_{k=0,...,n-1} T^{-k} P).$$

The K-S entropy $h(\mu)$ of μ :

$$h(\mu) = \sup_{P} h(\mu, P).$$

$(X, \mathcal{B}, \mathcal{T}, \mu)$ a measure preserving system P finite Borel partition

$$H_{\mu}(P) = -\sum_{A \in P} \mu(A) \log \mu(A)$$

The entropy $h(\mu, P)$ of μ w.r.t. P :

$$h(\mu, P) = \inf_{n} \frac{1}{n} H_{\mu}(\bigvee_{k=0,...,n-1} T^{-k} P),$$

=
$$\lim_{n} \frac{1}{n} H_{\mu}(\bigvee_{k=0,...,n-1} T^{-k} P).$$

The K-S entropy $h(\mu)$ of μ :

$$h(\mu) = \sup_{P} h(\mu, P).$$

(X, T) topological system

 $\mathcal{M}(X, T) := \{ \mu \text{ mesure de proba T-invariante} \}$ is a compact convex set with the set $\mathcal{M}_e(X, T)$ of ergodic measures as extremal points.

Ergodic decomposition : $\mathcal{M}(X, T)$ is a Choquet simplex, i.e.

 $\forall \mu \exists M_{\mu} \text{ supported on } \mathcal{M}_{e}(X, T) \text{ s.t.}$

 $f(\mu) = \int f(\nu) dM_{\mu}(\nu)$ for all affine real continuous f.

Any Choquet simplex may be realized as the set of invariant measures of a dynamical system.

(X, T) topological system

 $\mathcal{M}(X, T) := \{ \mu \text{ mesure de proba T-invariante} \}$ is a compact convex set with the set $\mathcal{M}_e(X, T)$ of ergodic measures as extremal points.

Ergodic decomposition : $\mathcal{M}(X, T)$ is a Choquet simplex, i.e.

 $\forall \mu \exists M_{\mu} \text{ supported on } \mathcal{M}_{e}(X, T) \text{ s.t.}$

 $f(\mu) = \int f(\nu) dM_{\mu}(\nu)$ for all affine real continuous f.

Any Choquet simplex may be realized as the set of invariant measures of a dynamical system.

(X, T) topological system

 $\mathcal{M}(X, T) := \{ \mu \text{ mesure de proba T-invariante} \}$ is a compact convex set with the set $\mathcal{M}_e(X, T)$ of ergodic measures as extremal points.

Ergodic decomposition : $\mathcal{M}(X, T)$ is a Choquet simplex, i.e.

 $\forall \mu \exists M_{\mu} \text{ supported on } \mathcal{M}_{e}(X, T) \text{ s.t.}$

 $f(\mu) = \int f(
u) dM_{\mu}(
u)$ for all affine real continuous f.

Any Choquet simplex may be realized as the set of invariant measures of a dynamical system.

Topological entropy Measure theoretical entropy General properties of the entropy function

(日) (同) (三) (三)

э

Harmonicity :

$$h(\mu) = \int h(
u) dM_{\mu}(
u).$$

Variational principle :

$$h_{top}(f) = \sup_{\mu \in \mathcal{M}(X, \mathcal{T})} h(\mu).$$

Entropy functions have been completely characterized for topological systems.

Topological entropy Measure theoretical entropy General properties of the entropy function

(日)

Harmonicity :

$$h(\mu) = \int h(
u) dM_{\mu}(
u).$$

Variational principle :

$$h_{top}(f) = \sup_{\mu \in \mathcal{M}(X,T)} h(\mu).$$

Entropy functions have been completely characterized for topological systems.

Topological entropy Measure theoretical entropy General properties of the entropy function

< A > <

Harmonicity :

$$h(\mu) = \int h(
u) dM_{\mu}(
u).$$

Variational principle :

$$h_{top}(f) = \sup_{\mu \in \mathcal{M}(X,T)} h(\mu).$$

Entropy functions have been completely characterized for topological systems.

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

< 🗇 > < 🖃 >

(X, T) invertible topological system

Two sided dynamical ball : $x \in X$, $n \in \mathbb{N} \cup \{\infty\}$, $\epsilon > 0$,

$$B_T^*(x, n, \epsilon) = \bigcap_{0 \le |k| < n} T^{-k} B(T^k x, \epsilon)$$

(X, T) strongly expansive :

$$\forall x \in X, \ B^*_T(x, \epsilon, \infty) = \{x\}.$$

Example : Subshifts.

The dimension of X is finite, even 0 when T is minimal.

 C^1 robust expansive systems are the Axiom A systems.

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

(X, T) invertible topological system

Two sided dynamical ball : $x \in X$, $n \in \mathbb{N} \cup \{\infty\}$, $\epsilon > 0$,

$$B_T^*(x, n, \epsilon) = \bigcap_{0 \le |k| < n} T^{-k} B(T^k x, \epsilon)$$

(X, T) strongly expansive :

$$\forall x \in X, \ B^*_T(x, \epsilon, \infty) = \{x\}.$$

Example : Subshifts.

The dimension of X is finite, even 0 when T is minimal.

 C^1 robust expansive systems are the Axiom A systems.

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

(X, T) invertible topological system

Two sided dynamical ball : $x \in X$, $n \in \mathbb{N} \cup \{\infty\}$, $\epsilon > 0$,

$$B_T^*(x, n, \epsilon) = \bigcap_{0 \le |k| < n} T^{-k} B(T^k x, \epsilon)$$

(X, T) strongly expansive :

$$\forall x \in X, \ B^*_T(x, \epsilon, \infty) = \{x\}.$$

Example : Subshifts.

The dimension of X is finite, even 0 when T is minimal.

 C^1 robust expansive systems are the Axiom A systems.

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

(X, T) topological system

Topological Tail entropy :

$$h^*(T,\epsilon) := \sup_{x \in X} h_{top}(B_T^{(*)}(x,\epsilon,\infty))$$

$$h^*(T) := \lim_{\epsilon \to 0} h^*(T, \epsilon).$$

Measure theoretical Tail entropy : X zero-dimensional $(P_k)_k$ sequence of clopen partitions with diameters going to 0

$$u(\mu) = \lim_{k} \limsup_{\nu \to \mu} \left[h(\nu) - h(\nu, P_k) \right]$$

Tail variational principle :

$$h^*(T) = \sup_{\mu \in \mathcal{M}(X,T)} u(\mu)$$

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

(X, T) topological system

Topological Tail entropy :

$$h^*(T,\epsilon) := \sup_{x \in X} h_{top}(B_T^{(*)}(x,\epsilon,\infty))$$

$$h^*(T) := \lim_{\epsilon \to 0} h^*(T, \epsilon).$$

Measure theoretical Tail entropy : X zero-dimensional $(P_k)_k$ sequence of clopen partitions with diameters going to 0

$$u(\mu) = \lim_{k} \limsup_{\nu \to \mu} \left[h(\nu) - h(\nu, P_k) \right]$$

Tail variational principle :

$$h^*(T) = \sup_{\mu \in \mathcal{M}(X,T)} u(\mu)$$

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

(X, T) topological system

Topological Tail entropy :

$$h^*(T,\epsilon) := \sup_{x \in X} h_{top}(B_T^{(*)}(x,\epsilon,\infty))$$

$$h^*(T) := \lim_{\epsilon \to 0} h^*(T, \epsilon).$$

Measure theoretical Tail entropy : X zero-dimensional $(P_k)_k$ sequence of clopen partitions with diameters going to 0

$$u(\mu) = \lim_{k} \limsup_{\nu \to \mu} \left[h(\nu) - h(\nu, P_k) \right]$$

Tail variational principle :

$$h^*(T) = \sup_{\mu \in \mathcal{M}(X,T)} u(\mu)$$

Strongly Expansive systems Tail entropy **Tail periodic growth** Entropy consequences of asymptotical expansiveness Entropy consequences of asymptotical expansivenness

<ロト < 同ト < 三ト

 $\forall n \in \mathbb{N},$

$$Per_n(X, T) := \{x, T^n x = x \text{ and } T^m x \neq x \text{ for } 0 < m < n\}.$$

Periodic growth :

$$p(T) := \limsup_{n} \frac{1}{n} \log \sharp Per_n(X, T).$$

Local periodic growth :

$$p^*(T) := \lim_k \limsup_n \frac{1}{n} \sup_{A^n \in P_k^n} \log \sharp Per_n(X, T) \cap A^n.$$

Measure theoretical local periodic growth :

$$p^*(\mu) := \lim_k \lim_{
u o \mu, \
u(\operatorname{Per}) = 1} \int p_k^*(x) d
u(x)$$

with $p_k^*(x) = rac{1}{n} \log \sharp Per_n \cap P_k^n(x)$ for $x \in Per_n$

Strongly Expansive systems Tail entropy **Tail periodic growth** Entropy consequences of asymptotical expansiveness Entropy consequences of asymptotical expansivenness

< 台

 $\forall n \in \mathbb{N},$

$$Per_n(X, T) := \{x, T^n x = x \text{ and } T^m x \neq x \text{ for } 0 < m < n\}.$$

Periodic growth :

$$p(T) := \limsup_{n} \frac{1}{n} \log \sharp Per_n(X, T).$$

Local periodic growth :

$$p^*(T) := \lim_k \limsup_n \frac{1}{n} \sup_{A^n \in P_k^n} \log \sharp Per_n(X, T) \cap A^n.$$

Measure theoretical local periodic growth :

$$p^*(\mu) := \lim_k \limsup_{\nu \to \mu, \ \nu(Per)=1} \int p_k^*(x) d\nu(x)$$

with
$$p_k^*(x) = \frac{1}{n} \log \sharp Per_n \cap P_k^n(x)$$
 for $x \in Per_n$

Strongly Expansive systems Tail entropy **Tail periodic growth** Entropy consequences of asymptotical expansiveness Entropy consequences of asymptotical expansivenness

 $\forall n \in \mathbb{N},$

$$Per_n(X, T) := \{x, T^n x = x \text{ and } T^m x \neq x \text{ for } 0 < m < n\}.$$

Periodic growth :

$$p(T) := \limsup_{n} \frac{1}{n} \log \sharp Per_n(X, T).$$

Local periodic growth :

$$p^*(T) := \lim_k \limsup_n \frac{1}{n} \sup_{A^n \in P_k^n} \log \sharp Per_n(X, T) \cap A^n.$$

Measure theoretical local periodic growth :

$$p^{*}(\mu) := \lim_{k} \limsup_{\nu \to \mu, \ \nu(Per)=1} \int p_{k}^{*}(x) d\nu(x)$$

with $p_{k}^{*}(x) = \frac{1}{n} \log \sharp Per_{n} \cap P_{k}^{n}(x)$ for $x \in Per_{n}$

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

(日)

Asymptotical *h*-expansiveness :

 $h^*(T)=0.$

 C^1 robustly h-expansive are the diffeos C^1 far from homoclinic tangencies.

Examples : C^{∞} maps!

Asymptotical *p***-expansiveness** :

 $p^*(T)=0.$

Examples : \mathcal{C}^∞ maps? No, but almost (at least in low dimensions).

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

A A B

Asymptotical *h*-expansiveness :

 $h^*(T)=0.$

 C^1 robustly h-expansive are the diffeos C^1 far from homoclinic tangencies.

Examples : C^{∞} maps!

Asymptotical *p*-expansiveness :

$$p^*(T)=0.$$

Examples : C^{∞} maps? No, but almost (at least in low dimensions).

11/21

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

$$\limsup_{\nu \to \mu} \left[h(\nu) - h(\mu) \right] \le u(\mu).$$

U.s.c. of the entropy function for (X, T) a. *h*-expansive :

 $h: \mathcal{M}(X, T) \to \mathbb{R}$ is u.s.c. and thus $\mathcal{M}_{max}(T) = \{\mu \in \mathcal{M}(X, T), \ h(\mu) = h_{top}(T)\}$ is a non empty compact set.

Strongly Expansive systems Tail entropy Tail periodic growth Entropy and periodic asymptotic expansiveness Entropy consequences of asymptotical expansivenness

< □ > < 同 > < 回 >

$$p(T) \leq h_{top}(T) + p^*(T).$$

Equidistribution of periodic points for (X, T) a. *p*-expansive :

Assume also
$$+\infty > p(T) \ge h_{top}(T)$$
 then

•
$$p(T) = h_{top}(T)$$
,

• any weak limit of $(\frac{1}{\sharp Per_n(X,T)} \sum_{x \in Per_n(X,T)} \delta_x)_n$ is a measure of maximal entropy.

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

(X, T) topological system

Zero-dimensional extension :

(Y,S) zero-dim. system with $\pi:Y o X$

- π surjective,
- $\pi \circ S = T \circ \pi$.

Principal zero-dimensional extension :

Zero dimensional extension $\pi(Y, S) \rightarrow (X, T)$ s.t. $\forall \mu \in \mathcal{M}(Y, S), \ h_T(\pi \mu) = h_S(\mu).$

Every topological system admits a zero-dimensional principal extension.

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

- 4 同 6 4 日 6 4 日 6

Symbolic Extension :

(Y,S) subshift with $\pi: Y \to X$

- π surjective,
- $\pi \circ S = T \circ \pi$.

$\implies h_{top}(T) < +\infty$

Principal symbolic extension : Symbolic extension $\pi(Y, S) \rightarrow (X, T)$ s.t. $\forall \mu \in \mathcal{M}(Y, S), \ h_T(\pi\mu) = h_S(\mu).$

$$\Longrightarrow h: \mathcal{M}(X,T)
ightarrow \mathbb{R}$$
 is u.s.c.

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

Symbolic Extension :

(Y,S) subshift with $\pi:Y o X$

- π surjective,
- $\pi \circ S = T \circ \pi$.

$$\Longrightarrow h_{top}(T) < +\infty$$

Principal symbolic extension : Symbolic extension $\pi(Y, S) \rightarrow (X, T)$ s.t. $\forall \mu \in \mathcal{M}(Y, S), h_T(\pi \mu) = h_S(\mu).$

$$\Longrightarrow h: \mathcal{M}(X, T)
ightarrow \mathbb{R}$$
 is u.s.c.

▲ 同 ▶ → 三 ▶

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

Ergodic generators : (X, \mathcal{B}, T, μ) be a measure preserving system a partition *P* of *X* is an ergodic generator when

$$\left(\bigvee_{|k| < n} T^k P\right)_n \text{ generates (up to null sets) } \mathcal{B}$$

Uniform generators : (X, T) topological invertible system a Borel partition P of X is a uniform generator when

$$diam(\bigvee_{|k| < n} T^k P) \xrightarrow{n} 0.$$

Ergodic generators : (X, \mathcal{B}, T, μ) be a measure preserving system a partition *P* of *X* is an ergodic generator when

$$\left(\bigvee_{|k| < n} T^k P\right)_n$$
 generates (up to null sets) \mathcal{B}

Uniform generators : (X, T) topological invertible system a Borel partition P of X is a uniform generator when

$$diam(\bigvee_{|k| < n} T^k P) \xrightarrow{n} 0.$$

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

Existence of finite ergodic generators :

An ergodic m.p. system (X, \mathcal{B}, T, μ) has a generator \iff $h(\mu) < +\infty$ Existence of finite uniform generator : For a 0-dim top. (X, T)

• clopen uniform generators

strongly expansive,

• 0-boundary uniform generators

a. *h* and a. *p* expansive, Preuve

• (Borel) uniform generator

symbolic extension and $p(au) < \infty$.

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

Existence of finite ergodic generators :

An ergodic m.p. system (X, \mathcal{B}, T, μ) has a generator $\overleftrightarrow{}$ $h(\mu) < +\infty$

Existence of finite uniform generator : For a 0-dim top. (X, T)

clopen uniform generators

 \Leftrightarrow strongly expansive,

• 0-boundary uniform generators

a. h and a. p expansive, Preuve

• (Borel) uniform generator

symbolic extension and $p(T) < \infty$.

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

- 4 同 6 4 日 6 4 日 6

Entropy function w.r.t. a symbolic extension : $\pi : (Y, S) \rightarrow (X, T),$

$$egin{array}{rcl} h_{\pi}:\mathcal{M}(X,T)&
ightarrow&\mathbb{R}\ &\mu&\mapsto&\sup_{
u,\ \pi
u=\mu}h_{\mathcal{S}}(
u). \end{array}$$

Supperenveloppe : (X, T) 0-dim. system,

 $(P_k)_k$ sequence of clopen partitions with diameters going to 0. An

u.s.c. affine function $E: \mathcal{M}(X, T) \to \mathbb{R}$ is a superenvelope when

 $\begin{aligned} \forall \delta > 0, \ \forall \mu \in \mathcal{M}(X, T), \\ \exists k_{\mu} \text{ and } \mathcal{V}_{\mu} \text{ neighborhood of } \mu \text{ s.t.} \\ \forall \nu \in \mathcal{V}_{\mu}, \ h(\nu) - h_{k_{\mu}}(\nu) \leq E(\mu) - E(\nu) + \delta \end{aligned}$

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

(日) (同) (三) (三)

Entropy function w.r.t. a symbolic extension : $\pi : (Y, S) \rightarrow (X, T),$

$$h_{\pi}: \mathcal{M}(X, T) \rightarrow \mathbb{R}$$

 $\mu \mapsto \sup_{\nu, \ \pi \nu = \mu} h_{\mathcal{S}}(\nu).$

Supperenveloppe : (X, T) 0-dim. system,

 $(P_k)_k$ sequence of clopen partitions with diameters going to 0. An

u.s.c. affine function $E: \mathcal{M}(X, T) \to \mathbb{R}$ is a superenvelope when

$$\begin{aligned} \forall \delta > 0, \ \forall \mu \in \mathcal{M}(X, T), \\ \exists k_{\mu} \text{ and } \mathcal{V}_{\mu} \text{ neighborhood of } \mu \text{ s.t.} \\ \forall \nu \in \mathcal{V}_{\mu}, \ h(\nu) - h_{k_{\mu}}(\nu) \leq E(\mu) - E(\nu) + \delta \end{aligned}$$

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

Symbolic extension theorem :

 $E + hhgm = h_{\pi}$ for some symbolic extension π

 \Leftrightarrow

E is a superenvelope.

Preuve sens facile

Embedding theorem :

 $E = h_{\pi}$ for some symbolic extension π

E is a superenvelope with $E \ge p^*$.

Symbolic extension entropy :

▲ 同 ▶ ▲ 三

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

Symbolic extension theorem :

 $E + hhgm = h_{\pi}$ for some symbolic extension π

 \Leftrightarrow

E is a superenvelope.

Preuve sens facile Embedding theorem :

 $E = h_{\pi}$ for some symbolic extension π

E is a superenvelope with $E \ge p^*$.

Symbolic extension entropy :

$$h_{s.e.} = \inf_{E \text{ superenvelope}} E.$$

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

Symbolic extension theorem :

 $E + hhgm = h_{\pi}$ for some symbolic extension π

 \Leftrightarrow

E is a superenvelope.

Preuve sens facile Embedding theorem :

 $E = h_{\pi}$ for some symbolic extension π

E is a superenvelope with $E \ge p^*$.

Symbolic extension entropy :

$$h_{s.e.} = \inf_{E \text{ superenvelope}} E.$$

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

S.e. operator : S(X, T) the set of u.s.c. real nonnegative function on $\mathcal{M}(X, T)$, \tilde{f} the u.s.c. envelope of f and $h_k = h(., P_k)$.

$$\begin{array}{rccc} \mathcal{T}:\mathcal{S}(X,T) & \to & \mathbb{R}^+, \\ f & \mapsto & \lim_k f + h - h_k. \end{array}$$

The superenvelopes are the fixed point of the nondecreasing operator \mathcal{T} of the complete lattice given by $S(X, T) \cup \{\infty\}$. The function $h_{s.e.}$ is the smallest fixed point of \mathcal{T} and it is the transfinite limit of $(\mathcal{T}^{\alpha}(0))_{\alpha}$. Moreover $u = \mathcal{T}(0)$.

Order of accumulation : smallest countable ordinal with $T^{\alpha}(0) = h_{s.e.}$.

(口) (得) (3) (3)

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

< 口 > < 同 > < 三 > < 三

S.e. operator : S(X, T) the set of u.s.c. real nonnegative function on $\mathcal{M}(X, T)$, \tilde{f} the u.s.c. envelope of f and $h_k = h(., P_k)$.

$$\begin{array}{rccc} \mathcal{T}:\mathcal{S}(X,T) & \to & \mathbb{R}^+, \\ f & \mapsto & \lim_k f + h - h_k. \end{array}$$

The superenvelopes are the fixed point of the nondecreasing operator \mathcal{T} of the complete lattice given by $\mathcal{S}(X, T) \cup \{\infty\}$. The function $h_{s.e.}$ is the smallest fixed point of \mathcal{T} and it is the transfinite limit of $(\mathcal{T}^{\alpha}(0))_{\alpha}$. Moreover $u = \mathcal{T}(0)$.

Order of accumulation : smallest countable ordinal with $T^{\alpha}(0) = h_{s.e.}$.

Any countable ordinal is realized by a topological system.

Zero-dimensional extension Generators Entropy theory of symbolic extension Example with large symbolic extension entropy

A B A A B A

S.e. operator : S(X, T) the set of u.s.c. real nonnegative function on $\mathcal{M}(X, T)$, \tilde{f} the u.s.c. envelope of f and $h_k = h(., P_k)$.

$$\mathcal{T}: \mathcal{S}(X, T) \rightarrow \mathbb{R}^+,$$

 $f \mapsto \lim_k f + h - h_k.$

The superenvelopes are the fixed point of the nondecreasing operator \mathcal{T} of the complete lattice given by $S(X, T) \cup \{\infty\}$. The function $h_{s.e.}$ is the smallest fixed point of \mathcal{T} and it is the transfinite limit of $(\mathcal{T}^{\alpha}(0))_{\alpha}$. Moreover $u = \mathcal{T}(0)$.

Order of accumulation : smallest countable ordinal with $\mathcal{T}^{\alpha}(0) = h_{s.e.}$.

Any countable ordinal is realized by a topological system.

The entropy function Finitely symbolic representation Entropy theory of symbolic extension

S.e. operator : $\mathcal{S}(X, T)$ the set of u.s.c. real nonnegative function on $\mathcal{M}(X,T)$, \tilde{f} the u.s.c. envelope of f and $h_k = h(., P_k)$.

$$\mathcal{T}: \mathcal{S}(X, T) \rightarrow \mathbb{R}^+,$$

 $f \mapsto \lim_k f + h - h_k.$

The superenvelopes are the fixed point of the nondecreasing operator \mathcal{T} of the complete lattice given by $\mathcal{S}(X,T) \cup \{\infty\}$. The function $h_{s,e}$ is the smallest fixed point of \mathcal{T} and it is the transfinite limit of $(\mathcal{T}^{\alpha}(0))_{\alpha}$. Moreover $u = \mathcal{T}(0)$.

Order of accumulation : smallest countable ordinal with $\mathcal{T}^{\alpha}(0) = h_{s.e.}$

Any countable ordinal is realized by a topological system.

▲ @ ▶ < `= ▶</p>

Example with large h_{s,e_k} : Collections of periodic measures $(\mathcal{P}_k)_k$ and collection of ergodic measures $(\mathcal{M}_k)_k$ s.t. :

- $h(\mu) > a_k > 0$ for all $\mu \in \mathcal{M}_k$.
- for all k any $\mu \in \mathcal{M}_k$ is a weak-* limit of periodic measures in PL.
- for all k any $\mu \in \mathcal{P}_k$ is a weak-* limit of measures in \mathcal{M}_{k+1} ,

then
$$orall \mu \in \mathcal{M}_{\mathsf{0}}, \; \mathit{h_{s.e.}}(\mu) \geq \sum_{k} \mathit{a_{k}}.$$

(日) (同) (三) (三)

Example with large $h_{s.e.}$: Collections of periodic measures $(\mathcal{P}_k)_k$ and collection of ergodic measures $(\mathcal{M}_k)_k$ s.t. :

- $h(\mu) > a_k > 0$ for all $\mu \in \mathcal{M}_k$,
- for all k any $\mu \in \mathcal{M}_k$ is a weak-* limit of periodic measures in \mathcal{P}_k ,
- for all k any $\mu \in \mathcal{P}_k$ is a weak-* limit of measures in \mathcal{M}_{k+1} ,

then
$$\forall \mu \in \mathcal{M}_0, \ h_{s.e.}(\mu) \geq \sum_k a_k.$$