1. Entropy

Exercice 1. *u.s.c. of K-S entropy w.r.t. zero-boundary partitions*. Let (X,T) be a topological system. We consider a *T*-invariant Borel probability measure and a finite Borel partition *P* with $\mu(\partial P) = 0$. Check that

$$\limsup_{\nu \to \mu} h(\nu, P) \le h(\mu, P)$$

Exercice 2. Entropy w.r.t. a family of functions.

Let (X, T) be a topological system.

- For $f: X \to [0,1]$ we let \mathcal{A}_f be the two-set partition of $X \times [0,1]$ defined by $\mathcal{A}_f := \{(x,t), f(x) \ge t\} \cup \{(x,t), f(x) < t\}$. Show that for the Lebesgue measure λ on [0,1] we have $\mu \times \lambda(\partial \mathcal{A}_f) = 0$ when f is continuous.
- Show there is a nondecreasing sequence of finite family of continuous (\mathcal{F}_k) so that $(\mathcal{A}_{\mathcal{F}_k})_k := \left(\bigvee_{f \in \mathcal{F}_k} \mathcal{A}_f\right)_k$ generates the Borel sigma algebra on $X \times [0, 1]$ modulo $\mu \times \lambda$ null sets for any $\mu \in \mathcal{M}(X, T)$.
- Prove that the K-S entropy function is the pointwise limit of a nondecreasing sequence of nonneagtive function $(h_k)_k$ with $h_0 \equiv 0$ and $h_k - h_l$ u.s.c. for any $k \geq l$. Deduce that the set of zero-entropy invariant measures is a \mathcal{G}_{δ} subset of $\mathcal{M}(X,T)$.

Exercice 3. Topological entropy and periodic growth for subshifts. 1. General subshift. For a subshift (Y, S) and for any positive integer nwe let \mathcal{W}_n denotes the set of n-words in Y). Prove the topological entropy of a subshift (Y, S) is given by

$$\mathsf{h}_{\mathsf{top}}(Y) = \limsup_{n} \frac{1}{n} \log \sharp \mathcal{W}_{n}.$$

Deduce from the above equality that

$$\mathsf{h}_{\mathsf{top}}(Y) \ge p(S).$$

2. Subshift of finite type. Let $A \in M_d(\{0,1\})$. We consider the subshift of finite type (Y_A, S) with adjacency matrix A. Show that

$$h_{top}(S) = \log \rho(A)$$

and

$$\mathsf{h}_{\mathsf{top}}(S) = p(S).$$

Does any C^{∞} maps admit a principal extension which is a subshift of finite type?

Exercice 4. Invariant measures and K-S entropy of SFT.

Let (Y, S) be a subshift of finite type. Prove the following properties :

• the periodic measures are dense in the set of probability invariant measures (endowed with the weak-* topology),

• the continuity points of the entropy function of an SFT are the invariants measures of zero entropy, which forms a residual set.

Do these properties hold for general subshifts?

Exercice 5. l.s.c. of top. entropy for smooth systems.

Let $(f_t)_t : X \to X$ be a flow with positive topological entropy. We also consider a continuous vector field Y on the circle \mathbb{R}/\mathbb{Z} vanishing only at 1 and the associated flow $(\phi_s^Y)_s$ on \mathbb{R}/\mathbb{Z} .

By considering the parametrized family $s \in \mathbb{R}^+ \mapsto g_s$ of dynamical systems on $X \times \mathbb{R}/\mathbb{Z}$ defined by

$$\forall (x,t) \in X \times \mathbb{R}/\mathbb{Z}, \ g_s(x,t) = (f_{\sin(2\pi t)}(x), \phi_s^Y(t)),$$

Show $\mathsf{h}_{\mathsf{top}}(g_0) > 0$ whereas $\mathsf{h}_{\mathsf{top}}(g_s) = 0$ for all s > 0. Give an example of a 4-dimensional manifold M such that the topological entropy is not lower semi-continuous on $Diff^{\infty}(M)$.

2. TAIL ENTROPY

Exercice 6. Power formula.

Let (X,T) be a topological dynamical system. Prove that for any $n \in \mathbb{Z}$

$$h^*(T^n) = |n|h^*(T)$$

Exercice 7. The tail entropy bounds the defect of u.s.c..

Let (X, T) be a topological system. We consider a *T*-invariant Borel probability measure μ .

 Let P be a finite partition. Check that for any δ > 0 we have for μ a.e. x

$$\limsup_{n} \frac{1}{n} \log \sharp \left\{ A^{n} \in P^{n}, \ A^{n} \cap B(x, n, \delta) \neq \emptyset \right\} \leq \mu([\partial P]^{\delta}) \log \sharp P,$$

where $[\partial P]^{\delta}$ denotes the closed δ -neighborhood of the boundary of P.

- Build for any $\epsilon > 0$ a finite partition P_{ϵ} with diameter less than ϵ satisfying $\mu(\partial P_{\epsilon}) = 0$.
- Show that

$$\limsup_{\nu \to \mu} h(\nu) \le h(\mu) + h^*(T).$$

Exercice 8. Robust tail entropy.

Let X be a compact metric space and let \mathcal{C} be a topological space of topological dynamical systems on X so that the topology on \mathcal{C} is stronger than the usual C^0 topology. For any $T \in \mathcal{C}$ we let $h^*_C(T)$ be the robust tail entropy of T in \mathcal{C}

$$h_C^*(T) = \lim_{\epsilon \to 0} \limsup_{\substack{S \xrightarrow{C} \\ S \xrightarrow{T}}} h^*(S, \epsilon).$$

Show that for any $\mu \in \mathcal{M}(X,T)$ we have

$$\limsup_{\nu \in \mathcal{M}(X,S) \to \mu} h_S(\nu) \le h_T(\mu) + h_C^*(T).$$

Exercice 9. Examples.

1. A continuous interval map f is said piecewise monotone, when there is a partition of [0, 1] given by a finite collection of intervals $\{I\}$ so that f is monotone on each I. Show that such maps are a. h-expansive (Hint: show that for any $0 < \epsilon < \inf_{I} |I|$ we have $h^*(f, \epsilon) \leq \log 2$). Assume moreover the map is piecewise expanding, i.e. $f|_{I}$ is C^1 and $|f'|_{I}| > \lambda > 1$ for any I. Prove then that f is also a. p-expansive.

2. Let $A \in GL_d(\mathbb{Z})$ and let f_A be the induced map on the *d*-torus. Such maps are called toral linear automorphisms maps. Prove these maps are h-expansive, i.e.

$$\exists \epsilon > 0 \ s.t. \ h^*(f, \epsilon) = 0.$$

3. Let X be a finite union of compact polygones in \mathbb{R}^2 . We consider an homeomorphism of X which is affine on each polygone. Prove such systems are a. h-expansive.

4. We consider the geodesic flow $(g_t)_t$ on the unit tangent bundle of a compact surface with negative curvature. Show g_t is h-expansive for any t (Hint: We recall $\{y, \forall t \ d(g_t x, g_t y) < \epsilon\} = g_{]-\epsilon,\epsilon[}x$ for some positive ϵ . Use then Exercise 6).

3. Symbolic extensions and embeddings

Exercice 10. Symbolic extension of the identity.

Let X be a compact metrizable space. Build a principal symbolic extension of the identity on X (Hint: Reduce to the case $X = \{0, 1\}^{\mathbb{Z}}$. Then show there is a decreasing sequence $(Y_n)_n$ of subshifts with two letters, s.t. $h_{top}(Y_n) \xrightarrow{n} 0$ and Y_n is the disjoint union of 2^n subshifts).

Exercice 11. Principal symbolic extension and a. h-expansiveness. Show that (X,T) admits a principal symbolic extension iff it is a. h-expansive.

Exercice 12. Non a. h-expansive example.

We consider a sequence of (a. h-)expansive topological dynamical systems $(X_n, T_n)_n$. Let (X, T) be the one-point compactification of the disjoint union of $(X_n, T_n)_n$, i.e.

 X is the disjoint union of the X_n's and a point * and we consider the topology on X which admits as the basis of neighborhoods at x ∈ X the open sets of X_n containing x if x ∈ X_n and the collection $\{\bigcup_{k>l} X_k, l\}$ if x = * (one can check X is metrizable when so do the

• $T = T_n$ on X_n for each n and $T^* = *$.

4

Show $h_{top}(T) = \sup_n h_{top}(T_n)$ and $h^*(T) = \limsup_n h_{top}(T_n)$. When does T admit a measure of maximal entropy? Compute the tail entropy function, the symbolic extension entropy function and the order of accumulation of (X,T).

Exercice 13. Topological Rohlin towers.

Let (X, T) be a zero-dimensional topological system. For any $\epsilon > 0$ and any integer n prove the existence of a clopen set U_n such that:

- the sets $T^k U_n$ are disjoint for k = 0, ..., n,
- $\bigcup_{|k| \le n} T^k U_n = X \setminus Per_n^{\epsilon}$ where Per_n^{ϵ} is an ϵ -neighborhood of the set Per_n of *n*-periodic points.

Exercice 14. Krieger's embedding Theorem.

Let (X,T) be a zero-dimensional expansive system. Check that $h_{top}(T) <$ $+\infty$. Prove there exists a topological embedding of (X,T) into the K-full shift with $K > \max\left(\mathsf{h}_{\mathsf{top}}(T), \sup_n \frac{\log \sharp Per_n(T)}{n}\right)$.

4. Entropy for C^r smooth systems

Exercice 15. Algebraic lemma in dimension 1.

Let $f: [0,1] \to \mathbb{R}$ be a semi-algebraic map. The functional version of the algebraic lemma in dimension 1 claims that for any positive integer r there exist C^r semi-algebraic maps $(\phi_i)_{i \in I}$ on [0, 1] s.t.

- $\bigcup_{i \in I} \phi_i(]0, 1[) = f^{-1}(]0, 1[),$ $\|\phi_i\|_r, \|f \circ \phi_i\|_r \le 1,$
- $\sharp I \leq c(r)$.
- (1) By considering the sets $\{|f'| \ge 1\}$ and $\{|f'| \le 1\}$ prove the reparametrization lemma for r = 1,
- (2) Prove the lemma by induction on r (Hint: Consider intervals where $f^{(r+1)}$ is monotone and then use a quadratic parametrization $x \mapsto$ x^{2}).

Exercice 16. Entropy conjecture for C^{∞} maps.

For a topological system (f, M) on a compact finite dimensional manifold we let $\rho(f_*)$ the maximal spectral radius of the induced map on the homology groups. The entropy conjecture states that for any C^1 dynamical system (f, M):

$$\mathsf{h}_{\mathsf{top}}(f) \ge \rho(f_*).$$

Assuming Yomdin's reparametrization lemma, prove the entropy conjecture for C^{∞} maps.

Exercice 17. Positive local volume growth in finite smoothness.

Consider a smooth system of the sphere \mathbb{S}^{2l} with zero topological entropy and with a fixed point at which the map may be written in local coordinate as a diagonal matrix with $\lambda > 1$ on the first l terms of the diagonal and λ^{-1} on the l-last terms. Build a C^r smooth disc σ (as a graph of some C^r but not C^{r+1} function) such that the local volume growth of σ satisfies:

$$\frac{l\log\lambda}{r} \lesssim v^*(\sigma).$$

Exercice 18. *u.s.c. of topological entropy for* C^1 *multimodal maps.* Let \mathcal{M}_k^1 be the set C^1 piecewise monotone interval map with at most k intervals of monotonicity.

• Show that for any $\epsilon > 0$ and for any $g \in \mathcal{M}_k^1$,

$$h^*(g,\epsilon) \le \frac{\log(k)\log^+(\|f'\|_{\infty})}{|\log(w(g',\epsilon))|}$$

where $w(g', \epsilon)$ denote the modulus of continuity of g', i.e.

$$w(g',\epsilon) := \sup_{|x-y|<\epsilon} |g'(x) - g'(y)|.$$

• Conclude the topological entropy is continuous on \mathcal{M}_k^1 (Hint: Use Exercise 8).

Exercice 19. Generic measures for C^r interval maps and surface diffeos with r > 1.

Let f be a C^r interval maps and surface diffeos with r > 1. Prove that for any $\epsilon > 0$ the set of measures with K-S entropy less than ϵ contains an open and dense set.

Exercice 20. Tail entropy bounds from superenvelopes.

We recall $\frac{\chi^+}{r-1}$ is a superenveloppe for C^r interval maps or C^r surface diffeomorphisms with r > 1. In these settings deduce the following upperbound on the tail entropy function:

$$u(\mu) \le \frac{\chi^+(\mu)}{r}.$$