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Abstract For a topological dynamical system (X,T ) we define a uniform
generator as a finite measurable partition such that the symmetric cylinder
sets in the generated process shrink in diameter uniformly to zero. The prob-
lem of existence and optimal cardinality of uniform generators has lead us
to new challenges in the theory of symbolic extensions. At the beginning we
show that uniform generators can be identified with so-called symbolic exten-
sions with an embedding, i.e., symbolic extensions admitting an equivariant
measurable selector from preimages. From here we focus on such extensions
and we strive to characterize the collection of the corresponding extension
entropy functions on invariant measures. For aperiodic zero-dimensional sys-
tems we show that this collection coincides with that of extension entropy
functions in arbitrary symbolic extensions, which, by the general theory of
symbolic extensions, is known to coincide with the collection of all affine su-
perenvelopes of the entropy structure of the system. In particular, we recover,
after [Bu16], that an aperiodic zero-dimensional system is asymptotically h-
expansive if and only if it admits an isomorphic symbolic extension. Next we
pass to systems with periodic points, and we introduce the notion of a period
tail structure, which captures the local growth rate of periodic orbits. Finally,
we succeed in precisely identifying the wanted collection of extension entropy
functions in symbolic extensions with an embedding: these are all the affine
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superenvelopes of the usual entropy structure which lie above certain thresh-
old function determined by the period tail structure. This characterization
allows us, among other things, to give estimates (and in examples to compute
precisely) the optimal cardinality of a uniform generator. As a byproduct, we
prove a theorem saying that every zero-dimensional system admits an ape-
riodic zero-dimensional extension which is isomorphic on aperiodic measures
and otherwise principal (periodic measures lift to measures of entropy zero).

1 Introduction

To make the subject of this paper precise, we start the introduction with a
formal definition:

Definition 1.1 By a uniform generator in an invertible topological dynamical
system (X,T ), where T is a homeomorphism of a compact metric space X, we
mean a finite measurable1 partition P of X satisfying

lim
n

diam(P [−n,n]) = 0,

where P [−n,n] =
∨n
i=−n T

iP and diam(P) is the maximal diameter of atoms
of P.

Notice that since the partitions P [−n,n] separate points, P is a Krieger
generator simultaneously for all invariant measures on X. However, not every
such simultaneous generator is uniform; for that the distance of separation
must shrink uniformly throughout the space (see also Remark 3.3). For ex-
ample, if (Y, S) is a subshift and PΛ is the zero-coordinate partition (whose
atoms are cylinder sets over one-blocks corresponding to the symbols in the
alphabet Λ), then PΛ is a uniform generator (it is also clopen, which makes it
specifically good). Uniform (not necessarily clopen) generators exist in some
non-expansive systems as well: take for instance the partition into any two
complementary arcs in an irrational rotation of the circle.

In this paper we focus on the existence and optimal cardinality of uniform
generators in topological dynamical systems, a task which turns out unex-
pectedly intricate, and leading to new developments in the entropy theory of
symbolic extensions. At the beginning of our study we make a crucial obser-
vation which links uniform generators with symbolic extensions.

Theorem 1.2 Let (X,T ) be a topological dynamical system. The following
conditions are equivalent:

1. There exists a uniform generator2 P in (X,T ), of cardinality `;

1 See Remark 1.3 for the precise meaning of measurability.
2 Later we will show that the measurability assumption of P can be dropped. That is, the

existence of a “non-measurable uniform generator” implies the existence of a measurable
one—see Remark 4.15.
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2. There exists a symbolic extension π : (Y, S) → (X,T ) over an alphabet of
cardinality `, which admits an equivariant measurable selector from preim-
ages, i.e., a map ψ : X → Y such that

(a) ψ ◦ T = S ◦ ψ, and
(b) π ◦ ψ = IdX .

Terminology: Since the map ψ is a measurable embedding of (X,T ) into (Y, S),
such a π (or the system (Y, S)) is called a symbolic extension with an embed-
ding.

Proof Let P be a uniform generator and let Λ be an alphabet which bijectively
labels the atoms of P, i.e., P = {Pa : a ∈ Λ}. The map ψ : X → ΛZ assigning
to each x its bilateral P-name (by the rule (ψ(x))(n) = a ⇐⇒ Tn(x) ∈ Pa)
is measurable and equivariant. Let Y = ψ(X). Clearly, Y is a subshift. For
y ∈ Y and n ∈ N let Cn(y) denote the set of points whose P-name coincides on
the interval [−n, n] with the central block y[−n, n] of length 2n+1 of y. Clearly,
this set is an atom of P [−n,n], so its diameter does not exceed diam(P [−n,n]),
and it is nonempty because the same block must occur in ψ(x) for some x ∈ X.
Thus the intersection

⋂
n Cn(y) contains exactly one point which we denote

as π(y). It is obvious that π : Y → X is a topological factor map and ψ is a
selector from its preimages.

Now assume that (X,T ) has a symbolic extension π : (Y, S) → (X,T )
admitting a required selector ψ. Let PΛ denote the zero-coordinate partition
of Y and define P = ψ−1(PΛ). Clearly, P is a measurable partition of X of
cardinality `, the same as that of the alphabet Λ of Y . The convergence of the
diameters of P [n,n] to zero follows directly from the three facts: that the same
property has PΛ in Y , that each atom of P [−n,n] is contained in the image by

π of an atom of P [−n,n]
Λ , and that π is uniformly continuous. ut

The above theorem allows us to switch from searching, among measurable
partitions, for a uniform generator to studying symbolic extensions (with ad-
ditional properties), which is a fairly well understood field. In this setup the
main object of our interest will be the collection of extension entropy func-
tions in symbolic extensions with an embedding. Once we manage to describe
this collection, we can compute the optimal cardinality of a uniform genera-
tor very easily. Our main results are formulated for zero-dimensional systems,
however, they equally apply to systems (X,T ) which admit an isomorphic
zero-dimensional extension, i.e., a topological zero-dimensional extension such
that the corresponding factor map is an isomorphism between each invariant
measure and its unique preimage. The class of systems admitting an isomor-
phic zero-dimensional extension includes those which have the small boundary
property, which is a large and well described class (however, it is unknown
whether the two conditions are equivalent).

We prove that if (X,T ) is zero-dimensional aperiodic (contains no periodic
orbits) then the collection of extension entropy functions in symbolic exten-
sions with an embedding is the same as that for general symbolic extensions.
If, in addition, (X,T ) is asymptotically h-expansive then we recover the result
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first obtained in [Bu16]3, that it admits an isomorphic symbolic extension, i.e.,
such that ψ(X) has full measure for all invariant measures on (Y, S). Because
the existence of an isomorphic symbolic extension implies (by former results)
asymptotic h-expansiveness, for aperiodic zero-dimensional systems we obtain
an equivalence.

The most interesting phenomena occur when (X,T ) does have periodic
points. The growth rate of periodic orbits then may influence the entropy of
symbolic extensions with an embedding (and thus the cardinality of a uniform
generator). The simplest example is a system (X,T ) consisting exclusively of
periodic points. Every such system admits a symbolic extension of entropy
zero. But a symbolic extension with an embedding must have at least as many
periodic orbits of every period as (X,T ), which, in view of the simple fact
that the topological entropy of a symbolic system is always at least as large as
the exponential growth rate of periodic orbits, implies positive entropy of the
extension, if there are sufficiently many periodic orbits in (X,T ) (see also Ex-
ample 4.1 in Section 4). So, for systems with periodic points, not all extension
entropy functions appearing in symbolic extensions occur in symbolic exten-
sions with an embedding, and a new challenge is to say precisely which ones
do. We succeed in providing a characterization by introducing a sequence of
functions defined on invariant measures, called the period tail structure. This
sequence is in some sense analogous to the entropy structure, but depends
exclusively on the distribution of periodic orbits in (X,T ). By combining the
period tail structure with the usual entropy structure we manage to iden-
tify the collection of appropriate superenvelopes, i.e., of the desired extension
entropy functions.

Remark 1.3 Recall that whenever we pass from a topological dynamical sys-
tem to a measure-theoretic system by fixing one of its invariant measures µ,
in order to obtain a standard probability space we must consider the sigma-
algebra of Borel sets completed with respect to µ. Notice that the intersection
of all such sigma-algebras (i.e., “universally measurable sets”) coincides with
the completion of the Borel sigma-algebra with respect to the sigma-ideal of
the null sets, i.e., sets of measure zero for all invariant measures. From now
on, by a measurable set we will mean any member of this completion.

Remark 1.4 Condition (2) in Theorem 1.2 can be weakened: it suffices that
the map ψ is defined almost everywhere on X, i.e., except on a null set. Indeed,
it is always possible to prolong the map to the missing null set. First of all,
if necessary, we can enlarge the null set A so that it becomes invariant, (i.e.,
a union of entire orbits). Next, A contains a set B selecting exactly one point
from every orbit of A. Now, the mapping ψ can first be defined on B as an
arbitrary selector from the preimages by π, and then prolonged to the rest of

3 The cited paper is the first work dealing with the subject of symbolic extensions with an
embedding. For asymptotically h-expansive systems the existence of an isomorphic extension
is proved even in presence of periodic points as long as they satisfy a condition called
asymptotic per-expansiveness.
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A following the rules of equivariance. So defined ψ|A is measurable, because
we operate within a null set whose all subsets are measurable by definition.

Remark 1.5 Later in this paper we will deal with symbolic extensions with
what we call partial embedding, i.e., a selector from preimages defined only on
some measurable invariant subset F ⊂ X (in the sequel this subset will support
all ergodic measures except some periodic ones). It can be proved that the
existence of a symbolic extension with partial embedding is equivalent to the
existence of a uniform partial generator, i.e., a partition P of F which satisfies
the condition of Definition 1.1. This approach will be useful in applications to
smooth dynamics discussed in [Bu16’] (see also the end of the last section).

2 Preliminaries

2.1 Symbolic extensions

By a subshift we mean a dynamical system (Y, S), where Y ⊂ ΛZ is closed
and shift-invariant, and S is the shift map (Sy)n = yn+1 (y = (yn)n∈Z ∈ Y ).
A symbolic extension of (X,T ) is a subshift (Y, S) together with a topological
factor map (i.e., continuous equivariant surjection) π : (Y, S) → (X,T ). The
map π induces a continuous and affine surjection π∗ :MS(Y )→MT (X) from
shift-invariant probability measures on Y to T -invariant probability measures
on X, defined by (π∗ν)(B) = ν(π−1(B)) (B is a Borel set in X). We will skip
the star and use π for this induced map. With an extension π we associate the
extension entropy function on MT (X) defined by the formula

hπ(µ) = sup{hν(S) : ν ∈ π−1(µ)},

where hν(S) denotes the Kolmogorov-Sinai entropy of ν on Y . The symbolic
extension entropy function is defined on MT (X) as

hsex(µ) = inf{hπ(µ) : π is a symbolic extension of (X,T )}.

Also, by h we will denote the entropy function on MT (X), h(µ) = hµ(T ).
Recall that the set MT (X), when regarded with the weak-star topology, is a
Choquet simplex (in particular, a compact convex set) and its extreme points
are precisely the ergodic measures. Below we recall two basic facts concerning
the symbolic extension entropy function.

– Both hsex and hπ (in any symbolic extension) are nonnegative upper semi-
continuous functions, and so are the differences hsex − h and hπ − h.

– (Symbolic extension entropy variational principle): sup{hsex(µ) : µ ∈MT (X)}
equals hsex(X,T ) defined as the infimum of htop(Y, S) over all symbolic ex-
tensions of (X,T ).

Further facts will be provided after entropy structure is introduced.
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2.2 Zero-dimensional systems

Array representation. Every topological dynamical system (X,T ) on a zero-
dimensional space X is conjugate to an inverse limit of subshifts. Practically,
this means that it admits an array representation in which every point x
is an array [xk,n]k≥1,n∈Z, where all entries xk,n belong a finite alphabet Λk
(which does not depend on x or n). It can be arranged that all the alphabets
Λk are the same, or even equal to {0, 1}. The map T is the horizontal shift
(Tx)k,n = xk,n+1. By projection on the first k rows, πkx = [xi,n]i∈[1,k],n∈Z we
obtain a topological factor of (X,T ) denoted by (Xk, Tk), which is a subshift

over the alphabet ∆k =
∏k
i=1 Λi. The projection πk naturally applies not only

to X but also to Xk+1, so that (Xk, Tk) is a topological factor of (Xk+1, Tk+1).
Then (X,T ) is the inverse limit of the subshifts (Xk, Tk).

System of markers. Let (X,T ) be an aperiodic zero-dimensional system given
in an array representation using some finite alphabets Λk. In order to allow
inserting markers we need to enlarge the alphabets: in row k we will be using
Λ∗k = Λk×{∅, |} = {a, a| : a ∈ Λk}. Now we recall the Krieger’s marker lemma
(see [Bo83, Lemma 2.2], here we use a version for zero-dimensional aperiodic
systems): In any aperiodic zero-dimensional system (X,T ), for every n ≥ 1
there exists a clopen set F ⊂ Y such that:

(a) T i(F ) are pairwse disjoint for i = 0, 1, . . . , n− 1,
(b)

⋃n
i=−n T

i(F ) = X.

We choose a fast increasing sequence {nk} of natural numbers and by applying
the above lemma with the parameters nk we obtain clopen marker sets Fk ⊂ X.
We distribute “preliminary” markers in every row k of every array x ∈ X by
the rule: if T ix ∈ Fk then we place a marker in x at the position (k, i). By a gap
between the neighboring markers, say at (k, i) and (k, j) we will always mean
the interval [i+1, j] in row k. The lengths of these gaps range between nk and
2nk + 1. Because each Fk is clopen, we obtain a conjugate representation of
(X,T ) with the markers. The last step will be called the upward adjustment.
Proceeding inductively (the first step being idle), for k ≥ 2 we move every
marker in row k to align it with the nearest marker in row k − 1, say, on the
right. Notice that each marker is moved by at most n1 +n2 + · · ·+nk−1, which
we can assume, is smaller than nk

2 . Since the new position of each marker
depends on a bounded rectangle in the array, the algorithm is continuous,
hence it produces a conjugate model of (X,T ). From now on by x ∈ X we will
understand the array with all the markers included. We can summarize the
properties of the markers just introduced:

(A) the gaps between two neighboring markers in row k range between pmin
k =

nk
2 and pmax

k = 5
2nk + 1,

(B) for k > 1 every marker in row k is aligned with a marker in row k − 1.

The latter condition simply means that the marker sets Fk (altered by the
upward adjustment) are nested. If we ignore the symbols from Λk and keep
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only the markers, we will obtain an array system (X0, T0) over two symbols
{∅, |} which is a topological factor of (X,T ), and which we will call the system
of markers.

The block occupying a gap in row number k of x, i.e, the positions between
two neighboring markers, will be called a k-block (occurring in x). The rectan-
gle extending vertically through the top k rows and horizontally between two
neighboring markers of the kth row of x, will be called a k-rectangle (occurring
in x; see Figure 2.1). Once a system of markers is established, it is not difficult

. . . 0 1 1 1 00 01 00 01 10 11 1 0 1 1 0 1 1 . . .

. . . 1 1 0 1 10 11 10 01 11 10 1 1 0 0 1 0 1 . . .

. . . 0 1 0 0 11 01 10 10 11 00 1 1 1 0 0 1 1 . . .

. . . 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 . . .
. . .

Fig. 2.1 The figure shows the first four rows (ordered from the top) of some array x with
the markers. The boldface symbols form a 3-rectangle.

to produce a new system with new lower and upper bounds pmin
k ≤ pmax

k of the
gap lengths, satisfying

(C) limk→∞
pmin
k

pmax
k

= 1.

The new system is obtained from the old one by subdividing, i.e., by putting
more markers in between the old ones in a way completely determined within
each old k-rectangle. Here is how it is done: for each k let mk be such that
mk(mk+1) ≤ pmin

k (the old value). Then every p ≥ pmin
k can be decomposed as

a sum amk + b(mk + 1) with some nonnegative integers a, b. We let a(p) and
b(p) be the choice of the parameters a, b (for the given p) with the maximal
possible parameter a. Now, in every array x we subdivide each k-block (by
putting more markers in row k) into a(p) sub-blocks of length mk followed by
b(p) sub-blocks of length mk + 1, where p is the length of B. When this is
done, we need to perform the upward adjustment of the newly put markers.
The maximal and minimal gaps after the adjustment lie between p′min

k = mk−
(m1 + · · ·+mk−1 + k− 1) and p′max

k = mk + 1 + (m1 + · · ·+mk−1 + k− 1). If
the numbers pmin

k (and thus mk) grow fast enough, the condition (C) will be
satisfied for the new system of markers. A system of markers satisfying (C)
will be called balanced.

Given a system of markers, the family of all k-rectangles occurring in X
will be denoted by Rk(X). Notice that for k = 1 k-rectangles are the same as
k-blocks, while for k > 1, every k-rectangle R consists of a concatenation of
some finite number q (depending on R) of (k−1)-rectangles (this concatenation
occupies the top k − 1 rows) with a k-block B appended in row number k at
the bottom. We will indicate this by writing

R =

[
R(1)R(2) . . . R(q)

B

]
.
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We will be using the following lemma, which is proved in the last paragraph
of [Se12] (although it is not isolated as a separate lemma). The additional
property stated below can be easily derived from the construction in [Se12].

Lemma 2.1 Suppose (X,T ) is given with a system of markers (X0, T0). If
pmin
k+1 is at least three times larger than pmax

k for every k, then there exists an iso-
morphic symbolic extension (Y0, S0) of (X0, T0), over the alphabet {0, 1}. The
corresponding factor map has the additional property, that the coding range
between Y0 and the k-th row of X0 (containing the k-markers) does not extend
beyond three consecutive k-markers. That is, for every y0 ∈ Y0, the position of
every k-marker in the image x0 of y0 can be determined by viewing the block
of y0 extending at most between the preceding and following k-markers in x0.

2.3 Small boundary property

A subset A ⊂ X of a topological dynamical system (X,T ) is a null set if it has
measure zero for all µ ∈MT (X). The system (X,T ) is said to have the small
boundary property if it admits a base of the topology consisting of sets whose
boundaries are null sets. Equivalently, the space admits a refining sequence
(see next line) of finite partitions into measurable sets with null boundaries.
A sequence of partitions {Pk : k ≥ 1} is refining if Pk+1 < Pk for each k
and diam(Pk) → 0 in k, where diam(P) denotes the maximal diameter of an
atom of a partition P. Obviously, any zero-dimensional system has the small
boundary property. Small boundary property can be interpreted as the system
being “equivalent” to a zero-dimensional one in the following sense:

Fact 2.2 (see e.g. [BD05]) A topological dynamical system (X,T ) which has
the small boundary property admits an isomorphic zero-dimensional extension
(X ′, T ′).

We recall that a topological factor map π : (X ′, T ′) → (X,T ) is said to
be isomorphic if the map π is a bijection after discarding some null sets from
both X and X ′. Equivalently, the adjacent map π :MT ′(X

′)→MT (X) is a
bijection (and then an affine homeomorphism) and, for every µ′ ∈ MT ′(X

′)
and µ = π(µ′), the standard measure-theoretic systems (X ′, Σµ′ , µ

′, T ′) and
(X,Σµ, µ, T ) are measure-theoretically isomorphic via the map π (Σµ′ and Σµ
denote the completed Borel sigma-algebras in respective spaces). As we have
already mentioned, it is unknown whether the implication in Fact 2.2 can be
reversed.

The theorem below follows from works of E. Lindenstrauss. It says that the
class of systems with small boundary property is quite large. Clearly the most
interesting for us class of systems admitting an isomorphic zero-dimensional
extension is even larger (at least not smaller).

Theorem 2.3 If (X,T ) has finite topological entropy and has a topological
factor which is minimal and aperiodic then (X,T ) has the small boundary
property.
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Remark 2.4 It is unknown whether the existence of an aperiodic minimal fac-
tor can be relaxed by only assuming aperiodicity of (X,T ).

Remark 2.5 Many systems with periodic points also have the small boundary
property. For instance, it is so when the system is finite-dimensional while the
subset of periodic points has dimension zero (see [Ku95]). The latter condition
holds for example if there are only countably many periodic points, a case
which we will exploit most.

2.4 Entropy structure and superenvelopes

In a general topological dynamical system the entropy structure is a compli-
cated notion. We will only use the simplified version valid in zero-dimensional
systems. Let (X,T ) be a zero-dimensional dynamical system represented as
the inverse limit of subshifts (Xk, Tk). The entropy structure is the sequence
of functions {hk}k≥1 defined on MT (X) by

hk(µ) = hµk(Tk),

where µk = πk(µ) (here πk is the factor map from X onto Xk). The entropy
structure has the following properties:

– Each hk is an affine upper semicontinuous function and so are the differ-
ences hk+1 − hk.

– The functions hk converge (pointwise) nondecreasingly to the entropy func-
tion h.

One of the central notions in the theory of symbolic extensions is that of a
superenvelope of the entropy structure (or just superenvelope for short). This
term applies to any function E on MT (X) such that E − hk is nonnegative
and upper semicontinuous for all k ≥ 1. We also admit the constant infinity
function as a superenvelope. Every finite superenvelope (if it exists, which is
not guaranteed) is upper semicontinuous, hence bounded from above. Also
E−h is upper semicontinuous. The pointwise infimum of all superenvelopes is
again a superenvelope and we call it the minimal superenvelope Emin. Clearly,
Emin ≥ h. It is known (see [Do05]) that the equality holds if and only if the
entropy structure converges to h uniformly, which is equivalent to the sys-
tem (X,T ) being asymptotically h-expansive (in the sense of Misiurewicz, see
[Mi76]). Among finite superenvelopes the most important are affine superen-
velopes, i.e., superenvelopes which are affine functions onMT (X). It turns out
that Emin equals the pointwise infimum of all affine superenvelopes, hence it is
concave, and only sometimes affine. In particular, it is affine in asymptotically
h-expansive system (because so is h).

2.5 Relations between symbolic extensions and superenvelopes

The key theorem in the theory of symbolic extensions is the Symbolic Extension
Entropy Theorem [BD05]:
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Theorem 2.6 A function E on MT (X) equals hπ for some symbolic exten-
sion if and only if it is an affine superenvelope of the entropy structure of
(X,T ).

Here are some immediate consequences of the theorem combined with some
facts stated earlier.

– hsex = Emin

– Emin = hπ in some symbolic extension if and only if Emin is affine.
– hsex = h if and only if (X,T ) is asymptotically h-expansive. This happens if

and only if there exists a principal symbolic extension π : (Y, S)→ (X,T ),
i.e., such that hµ(T ) = hν(S) whenever µ = π(ν).

– (X,T ) admits no symbolic extensions if and only if the constant infinity
function is the only superenvelope.

The above theorem has been refined by J. Serafin in [Se12]: the symbolic
extension realizing a finite affine superenvelope E (as hπ) can be faithful, i.e.,
such that the map π : MS(Y ) → MT (X) is injective (hence a homeomor-
phism). In such case E(µ) equals hν(S) where ν is the unique preimage of
µ.

2.6 d-bar distance

In Theorem 3.1 of the next section we will use the d-bar distance introduced by
Ornstein [Or74]. By a joining of two measure-preserving systems, we mean a
probability measure on the product space invariant with respect to the product
transformation, whose coordinate projections equal to the original measures.
Let (Y, S) be a subshift endowed with two invariant measures µ and ν. We
denote by J(µ, ν) the set of all joinings of µ and ν. Then the d-bar distance
d(µ, ν) is defined as follows:

d(µ, ν) = min
λ∈J(µ,ν)

∫
Y×Y

1x0 6=y0(x, y) dλ(x, y).

We recall that the d-bar distance is stronger than the weak-star topology in
the sense that a d-convergent sequence is also weakly-star converging (to the
same limit).

By a standard argument, the d-distance has the following convexity prop-
erty: for any µ, ν ∈MS(Y ),

d(µ, ν) ≤
∫ ∫

d(ξ, η) dMµ(ξ) dMν(η), (2.1)

where µ =
∫
ξ dMµ(ξ) and ν =

∫
η dMν(η) are the ergodic decompositions of

µ and ν, respectively.
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3 Symbolic extensions with an embedding of aperiodic systems

We will prove the following refinement of the Symbolic Extension Entropy
Theorem:

Theorem 3.1 Let (X,T ) be an aperiodic zero-dimensional dynamical system
and let E be an affine superenvelope of the entropy structure of X. Then there
exists a symbolic extension π : (Y, S)→ (X,T ) such that

– hπ = E.
– diam(π−1(µ)) ≤ E(µ)− h(µ) for the d-bar distance on MS(Y ).
– There exists an equivariant measurable map ψ : X → Y such that π ◦ ψ =

IdX (i.e., ψ is a selector from the preimages of π; such map is necessarily
injective), that is to say, π is a symbolic extension with an embedding.

The proof is provided at the end of this section. For now, let us list some
consequences of the theorem.

1. The last condition implies that every measure µ ∈MT (X) has, in its fiber
π−1(µ), at least one element, namely ν = ψ(µ), such that (X,Σµ, µ, T )
and (Y,Σν , ν, S) are measure-theoretically isomorphic.

2. If E(µ) = h(µ) then π−1(µ) = {ν}, where ν is as above. In other words, π
is faithful and isomorphic on such measures.4

3. If (X,T ) is asymptotically h-expansive then, taking E = h, we obtain a
symbolic extension which is isomorphic. Because an isomorphic extension
is obviously principal (preserves the entropy of each invariant measure), we
obtain that the following conditions are equivalent in the class of aperiodic
zero-dimensional systems:
– (X,T ) is asymptotically h-expansive,
– (X,T ) admits an isomorphic symbolic extension.

This recovers a result from [Bu16] which sheds a new light on how close
asymptotic h-expansive systems are to symbolic systems.

4. If (X,T ) is not asymptotically h-expansive then the extension described
in the theorem cannot be faithful; each measure µ ∈ MT (X) for which
E(µ) > h(µ) (and we assume that there are such measures) has in its fiber
at least two elements: the measure ν isomorphic to µ (hence with entropy
h(µ)) and another measure with entropy equal to E(µ) (since the fiber of
µ is a compact subset of MS(Y ), and the entropy function in a symbolic
system is upper semicontinuous, the supremum E(µ) of entropy over the
fiber is attained). However, the d-bar distance between these two measures
is small if E(µ) is close to h(µ).

Remark 3.2 The zero-dimensionality assumption in Theorem 3.1 can be re-
placed by the property of admitting an isomorphic zero-dimensional extension

4 In many situations, the equality E(µ) = h(µ) holds on a large set of invariant measures.
For instance, it is known that Emin = h on a residual subset ofMT (X) and whenever Emin is
affine (which is always the case for example whenever the set of ergodic measures is closed),
then it is the most natural choice for E. More details can be found in [BD05] or [Do05].
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(in particular, it suffices to assume the small boundary property). The map ψ
will then be defined except on a null set, but then we can use Remark 1.4 to
prolong it.

Remark 3.3 Our Theorem 3.1 refines (under the assumptions of the theorem)
the result by Hochman [Ho13] on the existence of a finite generator simulta-
neous for all aperiodic ergodic measures in any Borel dynamical system with
finite entropy. However, there is a price for having a uniform generator rather
than the simultaneous generator of Hochman. The Theory of Symbolic Ex-
tensions (enhanced by this work) implies that a uniform generator must have
cardinality at least 2hsex(X,T ) 5 and its existence is excluded in systems not
admitting symbolic extensions. Hochman’s simultaneous generators exist in
any aperiodic6 topological dynamical system (X,T ) and the smallest integer
strictly larger than 2htop(X,T ) suffices to be the cardinality.

The proof of Theorem 3.1 relies heavily on the original construction of a
symbolic extension realizing a given affine superenvelope E, as described in
[BD05] (see also [Do11, Section 9.2]). That construction, which we will call
standard, allows for an almost complete freedom in choosing the family of
“preimage-blocks” for a k-rectangle, as long as the cardinality of this family
is kept within a correct range. We will just be more specific about this choice,
so that our construction is not even a modification but (up to a small detail)
a particular case of the original one. Similar strategy was used by J. Serafin in
his construction of a faithful symbolic extension in [Se12]. The “small detail”
which differentiates our construction from the original is the same as used in
Serafin’s proof: The original construction, which did not attempt to minimize
the size of the fiber of a measure, started with replacing the system by its
direct product with an odometer. This trick allowed to have a very regular
system of markers (all k-blocks had the same length), for the price of possi-
bly producing multiple (and usually non-isomorphic) lifts of many invariant
measures, already in this initial step. Like in Serafin’s proof, we cannot afford
such an extravagance. This is the reason why we are assuming aperiodicity
and then we use the natural system of markers built (as a topological factor)
into our system. This seemingly affects the entropy estimates (not the con-
struction itself). Fortunately, as we have already remarked, we can always use
a balanced system of markers (see condition (C) above) and then the entropy
estimates can be conducted as if all k-blocks had constant length.

Proof of Theorem 3.1 The following two paragraphs summarize the general
construction of a standard symbolic extension realizing an affine superenve-
lope. There is almost nothing new here compared to [BD05] or [Do11], up to
modifications of the system of markers described in [Se12].

We start with the system (X,T ) given in an array representation. Before
we even introduce in (X,T ) a system of markers, we need to establish the

5 Throughout this paper we calculate all entropies using the logarithm to base 2 (we will
write just “log”, but in most cases we will not simplify log 2).

6 Recently, Hochman extended the result also to systems with periodic points [Ho16].



Uniform generators 13

sequence {pmin
k } bounding from below the lengths of the k-rectangles. This

is done with reference to the relative complexities of the top k-row factors
and to the given affine superenvelope E. The restrictions concern only the
speed of growth, more precisely, they establish lower bounds for the values of

pmin
k and of the ratios

pmin
k+1

pmin
k

.7 Any sufficiently fast growing sequence will serve.

Precise inequalities which must be fulfilled are provided e.g. in [Do11, Section
9.2]. At this point we introduce in (X,T ) a balanced system of markers with
the bounds pmin

k and pmax
k . Next, the affine superenvelope E allows us also to

determine a finite alphabet Λ (we select one element of the alphabet and call
it “zero”) and define an oracle, i.e., a sequence of functions Ok : Rk(X)→ N,
each on the set of all k-rectangles appearing in X, and satisfying the oracle
inequalities: ∑

B∈R1

O1(B) ≤ (#Λ)p
min
1 , (3.1)

and, for each k > 1,∑
B

Ok
([
R(1)R(2) . . . R(q)

B

])
≤ Ok−1(R(1))Ok−1(R(2)) · · · Ok−1(R(q)), (3.2)

where the sum ranges over all k-rectangles occurring in X and having, in the
top k−1 rows, a fixed concatenation R(1)R(2) . . . R(q) of (k−1)-rectangles. The
precise values of the oracle depend in a specific way on the superenvelope E
(and also on the entropy structure), which in this paper we will skip describing.
The interested reader is referred to [BD05] or the book [Do11].

Once the oracle is established, one produces a decreasing sequence of sub-
shifts Yk ⊂ ({0, 1}×Λ)Z, together with topological factor maps ρk : Yk → Xk.
Moreover, the following diagram commutes

Y1 ←−−−−
Id

Y2 ←−−−−
Id

Y3 ←−−−−
Id

. . .yρ1 yρ2 yρ3
X1 ←−−−−

π1

X2 ←−−−−
π2

X3 ←−−−−
π3

. . . ,

so the inverse limit Y of the Yk’s (which is simply their intersection, hence a
subshift) is a symbolic extension of the inverse limit of the Xk’s, i.e., of X, via
the map π = limk ρk, which on Y happens to be a uniform limit. The alphabet
used in each Yk is Λ∗ = {0, 1} ×Λ and the subshift is imagined as having two
rows: the first row (over {0, 1}) is denoted Y0 and it matches the isomorphic
symbolic extension of the system of markers (X0, T0) given by Lemma 2.1.
The second row in Yk is more subtle. The rule behind filling the second row
(and connecting the oracle with the maps ρk) is, that with each k-rectangle R
occurring in Xk (equivalently, in X) we associate a “list” Fk(R) consisting of

7 Technically, we should bound the ratios
pmin
k+1

pmax
k

, but since we always have pmax
k ≤ 3pmin

k ,

it suffices to bound the ratios
pmin
k+1

pmin
k

.
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precisely Ok(R) blocks over Λ (of the same length as R). The families should
be disjoint for different k-rectangles. Then the preimages by ρk of xk ∈ Xk

have in the second row all possible sequences y over Λ such that “above” (i.e.,
at the same horizontal coordinates as) every k-rectangle R in xk there appears
in y a block from Fk(R). The map ρk is the block-code which replaces each
k-block B in (y0, y) ∈ Yk (the first row y0 allows to determine the parsing
into the k-blocks) by the unique k-rectangle R such that B ∈ Fk(R). The
commutation of the diagram imposes a recursive relation between the lists of
order k and k − 1: if

R =

[
R(1)R(2) . . . R(q)

B

]
then the blocks in Fk(R) must be selected from the concatenations of the
particular form: a member of Fk−1(R(1)) followed by a member of Fk−1(R(2)),
and so on, until a member of Fk−1(R(q)). The oracle inequalities (3.1) and (3.2)
make such a selection possible. The dependence of the oracle on E is such that
whenever the above described scheme of building Y (and π) is followed, the
extension entropy function hπ equals precisely E.

The task in this paper is to provide a specific choice of the families Fk(R),
which will ensure the last two assertions of Theorem 3.1.

Here is how we proceed. We first modify the alphabet and the oracle (with-
out changing the notation), as follows. We enlarge the alphabet by a few terms
to get

∑
B∈R1

O1(B) ≤ (#Λ)p1−2 (see (3.1)). Then we replace each value of

the oracle, say Ok(R), by (#Λ)dlog#Λ(Ok(R))e+1. Since we have enlarged each
value by a factor between #Λ and (#Λ)2 and each k-rectangle contains at
least two (k−1)-rectangles, (3.1) and (3.2) are still satisfied, so we have cre-
ated a new oracle, whose values are integer powers of #Λ. This modification
does not affect any of the entropy computations.

Next we employ a simple combinatorial tool and fact:

Definition 3.4 A prefix partition of the family Λn of all blocks over Λ of
length n is a partition into cylinders of the form [C] = {B ∈ Λn : B[1, |C|] =
C}, where C ∈ Λ|C|, 1 ≤ |C| ≤ n. The blocks in one element of the partition
have a common prefix C, which we will call the fixed positions and a remaining
suffix which ranges over all possible blocks of the complementary length, which
we will call the free positions.

The proof of the following fact is an elementary exercise and will be omit-
ted.

Lemma 3.5 Suppose some positive integers n1, n2, . . . , nq and n satisfy

q∑
i=1

(#Λ)ni ≤ (#Λ)n.

Then there exists a prefix partition Λn = [C1] ∪ [C2] ∪ · · · ∪ [Cq′ ], with q′ ≥ q
and satisfying, for all i ≤ q, the equality |Ci| = n − ni (notice that then
#[Ci] = Λni).
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We can now specify the families Fk(R) inductively, as follows. For k =
1, since the numbers O(R) are integer powers of #Λ summing to at most

(#Λ)p
min
1 , the families F1(R) can be assigned according to a prefix partition

of Λp
min
1 : F1(R) = [C(R)], satisfying |C(R)| = pmin

1 − log#Λ(O1(R)). Since the

lengths of all blocks in F1(R) should match that of R, and in case |R| > pmin
1 we

cannot add any more free positions, we also fix the |R|−pmin
1 terminal symbols

(for example, we put there zeros, regardless of R), so that the number of the
free positions still equals log#Λ(O1(R)).

Suppose for some k ≥ 2 we have defined the families Fk−1(R) for all
(k−1)-rectangles R in such a way that for each R the interval of integers
{1, 2, . . . , |R|} is divided in two subsets, one, called fixed positions, where all
members of the family have the same symbols, and the rest, of cardinaly
log#Λ(Ok−1(R)), called free positions, where all possible configurations occur.
We need to specify Fk(R) for k-rectangles R. Let

R =

[
R(1)R(2) . . . R(q)

B

]
.

According to the rules, we need to select Fk(R) from the collection of all possi-
ble concatenations of blocks belonging to Fk−1(R(1)),Fk−1(R(2)), . . . ,Fk−1(R(q))
(one block from each family, maintaining the order). Such concatenations have
fixed symbols along some set, and range over all possibilities over the rest (the
free positions). The number of the free positions equals

∑q
i=1 log#Λ(Ok−1(R(i))).

The fixed contents determines that if two k-rectangles differ already in
the top k − 1 rows then their corresponding families will be disjoint. So, we
only need to make sure that the families selected for the same concatenation
R(1)R(2) . . . R(q) (and different last row blocks B) are disjoint. Denoting

n(B) = log#Λ

(
Ok
([
R(1)R(2) . . . R(q)

B

]))
the inequality (3.2) takes on the form∑

B

(#Λ)n(B) ≤ (#Λ)n,

where n =
∑q
i=1 log#Λ(Ok−1(R(i))). Our Lemma 3.5 allows to create the fam-

ilies Fk(R) (with the required cardinalities) according to a prefix partition
“relative on the free positions” i.e., for every B, in addition to the symbols
fixed in the previous step for the (k−1)-rectangles, we also fix the symbols
along some initial free positions in a way depending on B, and allow all possi-
bilities along the remaining free positions (in fact there will be n(B) such free
positions). Now the inductive assumption is satisfied for k+ 1. This concludes
the construction of the families Fk(R) and thus of the symbolic extension
realizing the prescribed affine superenvelope E.

It remains to check that the extension admits an embedding. To this end we
only need to point out a measurable injective and equivariant map ψ : X → Y
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which is a selector from preimages of π. It is obvious that almost every point
x ∈ X (except in a null set) determines two objects: (1) the contents of the first
row in all its preimages by π; this is the symbolic encoding y0 of the system
of markers in x, and (2) the symbols from Λ in the second row along a subset
of coordinates (the fixed positions), which is simply the union (over k) of the
sets of fixed positions corresponding to the k-rectangles appearing in x. All
remaining positions (whose collection may happen to be empty) are admitted
all possible configurations of symbols (as y ranges over π−1(x)). In particular,
there appears also the distinguished configuration consisting of all zeros. We
assign the corresponding element y0 ∈ π−1(x) to be ψ(x). Measurability of
so defined map ψ : X → Y is standard and the fact that it is equivariant is
obvious.

The proof is almost complete. It remains to estimate, by E(µ)− h(µ), the
d-bar diameter of the fiber of an invariant measure µ ∈MT (X). The property
(2.1) allows to reduce the problem to the case of µ ergodic. Then, if x is generic
for µ,8 it is easily seen that the free positions in the preimages of x have density
equal to the limit in k of the densities of the free positions in the preimages
by ρk of xk, which, in turn equal the weighted averages of 1

|R| log#Λ(Ok(R)),

where R ranges over all k-rectangles and the weights are given by the values
µ assigns to the corresponding cylinders. The dependence between E and the
oracle (described in the cited earlier works) is such that this limit happens to
be exactly E(µ) − h(µ). On the other hand, it follows from general facts in
topological dynamics that if x is generic for µ then every ergodic measure in
the fiber of µ has a generic point in the fiber of x. By Theorem I.9.10 in [Sh96]
two ergodic measures whose some generic points differ along a set of density ε
are at most ε apart for the d-bar distance. This ends the proof. ut

Remark 3.6 Krieger ([Kr82]) proved that any aperiodic subshift of topological
entropy h is conjugate to a subshift over an alphabet of cardinality b2hc+1. So,
our symbolic extension (Y, S) with an embedding of (X,T ) (whose alphabet
is a priori {0, 1} × Λ, which is quite large), can be recoded using an alphabet
whose cardinality is the smallest integer strictly larger than 2 supE , where
supE denotes the largest value of E on MT (X).

Corollary 3.7 If (X,T ) is an aperiodic zero-dimensional dynamical system
then a uniform generator of (X,T ) exists if and only if the minimal superen-
velope Emin of the entropy structure is finite (and then it equals hsex, and its
maximal value is hsex(X,T )). The optimal cardinality of a uniform generator
then equals b2hsex(X,T )c+ 1.

8 A point is generic for an invariant measure µ if the empirical measures along its orbit
converge weakly-star to µ. In symbolic systems, equivalently: the density of occurrences of
every block equals its measure. For µ ergodic the set of generic points has measure 1.
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4 Extensions preserving selected periodic points

In this section we address the symbolic extensions with an embedding (equiv-
alently, uniform generators) for systems with periodic points. To illustrate the
complexity of the problem we begin with a relatively simple yet motivating
example.

Example 4.1 Let X be the array system consisting of all {0, 1}-valued arrays x
(with markers) which fit the following description: x has at most two nonzero
rows: first of them (if present), number m (which is arbitrary), contains a
periodic sequence of period m with markers every m-th position, while the
second nonzero row (if present), number m + j (where j ≥ 2 is arbitrary),
contains a periodic sequence of minimal period mj with markers every mj-
th position aligned with (some) markers in row m. The structure of ergodic
measures is as follows: there are periodic measures µm,i,j,l supported by arrays
with nonzero rows m and m + j. The minimal period is mj. The index i
enumerates all possible {0, 1}-valued (with markers) m-periodic orbits, and
ranges from 1 to 2m. Likewise, the index l enumerates all {0, 1}-valued (with
markers) mj-periodic orbits, and ranges from 1 to 2mj . If we fix m and i and
let j grow, the measures µm,i,j,l (regardless of l) approach the measure µm,i
supported by arrays with only one nontrivial row, number m, containing the i-
th periodic pattern of period m. If we let m grow, the measures µm,i approach
(regardless of i) the pointmass µ0 of the fixpoint—the zero array.

An obvious symbolic extension (Y, S) with an embedding is obtained as
follows: Y is the subshift over four symbols with markers, represented as two-
row {0, 1}-sequences (with markers in each row). The preimage of each array
x which has two nontrivial rows is the unique y with the m-th row of x copied
as the first row and with the (m+j)-th row of x copied as the second row.
The arrays x with only one nontrivial row have many preimages: each of them
has the first row identical as the m-th row of x, while the second row contains
arbitrary {0, 1}-valued sequences with either no markers or just one marker
at some place, aligned with a marker in the first row. Finally, the zero array
has also many preimages, each consists of a pair of arbitrary {0, 1}-valued
sequences either with no markers or with one marker in the first row and
no markers in the second, or one marker in both rows at the same place.
The verification of all required properties is straightforward. The function hπ

equals 0 on all measures µm,i,j,l, log 2 on each µm,i and log 4 on µ0.

But we can create a new, better, symbolic extension with an embedding.
And so, if x has two nontrivial rows then any its preimage y will be periodic
with the same period mj as x. The second row of y will the same as the row
m+ j of x, however, the first row of y will be different:

– if j < m then the first row of y uses only every j-th position, starting at a
marker in the second row (other are filled with zeros), where consecutive
symbols of the m-periodic sequence appearing in row m of x are copied
(we align the markers in both rows; this row has period mj);
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– if j ≥ m then the first row of y uses only every m-th position, where
the consecutive j symbols (counting from the marker) of the m-periodic
sequence appearing in row m of x are copied repeatedly, so that the first
marker is aligned with a marker in row 2 (this row also has period mj and
since j ≥ m the entire periodic pattern from row m of x can be recovered
from y.

To points x with only one nontrivial row we assign one special periodic preim-
age y whose first row is a copy of the row m of x and the second row is just
zeros. This preimage will serve for the embedding. By taking closure of the
formerly constructed elements, every such x admits also plenty of other preim-
ages, whose second row is completely arbitrary with no or one marker, while
the first row contains the periodic pattern as in row m of x but spread every m-
th position (creating the period m2). Finally, by taking closure of the formerly
constructed elements of Y , the zero array in X receives many preimages with
an arbitrary second row (with no or one marker), and with the first row which
is either just zeros or has one 1 at some place (it may also have one marker).
Also it receives second kind of preimages, with an arbitrary first row (with at
most one marker) and trivial second row. Among these preimages there is also
the fixpoint of Y—the element with two rows filed with zeros and no markers.
This preimage serves for the embedding. Each measure µm,i,j,l has only one
preimage, which is periodic so hπ = 0 on these measures. The measures µm,i
have, in spite of periodic lifts, also lifts supported by sequences with one arbi-
trary and one periodic row. For these measures hπ = log 2. Finally, µ0 lifts to
a pointmass at the zero array and measures supported by sequences with one
arbitrary row and one trivial row. Here also hπ = log 2. We managed to lower
the topological entropy of Y to log 2.

To handle the general case, we need to develop a rather intricate theory.
We begin with simple things. By Per(X,T ), Pern(X,T ) and Per[n1,n2](X,T )
we will denote the sets of all periodic points in (X,T ), all periodic points with
minimal period n, and with minimal period between n1 and n2, respectively.
Below we present two crucial notions related to periodic points.

Definition 4.2 The supremum periodic capacity and the limit periodic ca-
pacity are defined, respectively, as

Psup(X,T ) = sup
n≥1

1
n log(#Pern(X,T )),

Plim(X,T ) = lim
n→∞

1
n log(#Pern(X,T )).

Clearly, Plim(X,T ) ≤ Psup(X,T ). If (Y, S) is a subshift over an alphabet Λ
then different n-periodic points differ already in the initial block of length n,
thus #Pern(X,T ) estimates from below the number of all blocks of length n
occurring in X. It is thus elementary to see that

Psup(Y, S) ≤ log(#Λ) and Plim(Y, S) ≤ htop(Y, S).
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If (Y, S) is a symbolic extension of (X,T ) with an embedding then (Y, S) has
periodic capacities at least as large as (X,T ) has, and thus Psup(X,T ) must be
finite (in particular, each set Pern(X,T ) must be finite and Per(X,T ) at most
countable), the alphabet used in Y must contain at least 2Psup(X,T ) elements,
while its topological entropy must reach at least Plim(X,T ). The first fact
alone has no further dynamical consequences9, but the second one implies
that the extension entropy function hπ in such extensions may be affected
(enlarged) by the structure of periodic points in (X,T ) (provided it is rich
enough). This is the reason why in Example 4.1 we cannot hope to build a
symbolic extension with an embedding with topological entropy smaller than
log 2 (although hsex(X,T ) = 0 as in any system with zero topological entropy);
the limit periodic capacity in this example is easily seen to equal log 2. Our
goal of this section is to describe precisely the dependence of hπ in symbolic
extensions with an embedding on the structure of periodic points, and how it
is combined with the usual dependence on the entropy structure.

As already mentioned in the Introduction, we will work in a slightly more
general context. We allow the system (X,T ) to have arbitrarily many (even
continuum) periodic points for every period. However, for each n we select a fi-
nite and invariant subset Per∗n ⊂ Pern(X,T ) and we will study symbolic exten-
sions with partial embedding, i.e., such that every aperiodic ergodic measure
and every periodic measure supported by

⋃
n Per

∗
n has an isomorphic preimage,

equivalently, with an embedding of a Borel set of full measure for any measure
as above. The unselected periodic points will typically have no periodic preim-
ages. Clearly, if Pern(X,T ) is finite for each n, choosing Per∗n = Pern(X,T )
we include in our consideration symbolic extensions with (full) embedding as
well.

4.1 The enhanced system

Let (X,T ) be given in an array representation using in row number k the
alphabet Λk (k ≥ 1). We also attach a row number zero which is formally
over the alphabet Λ0 = {0, 0|}, but in each x ∈ X we fill this row exclusively
with zeros. For each n we have selected and fixed a finite and invariant subset
Per∗n ⊂ Pern(X,T ). For better understanding of how a symbolic extension with
a partial embedding works, it will be helpful to enlarge, in a certain way, the
system (X,T ). We will denote the resulting enhanced system by (X̂, T̂ ), and
(X,T ) is going to be a subsystem (not a factor) of (X̂, T̂ ). Before the definition
we need to establish some notation:

Notation: Every periodic point (array) x ∈ Per∗n is an infinite bilateral con-
catenation of copies of the same verical strip extending through n columns
and all rows, i.e., a subarray s ∈ (

∏
k≥1 Λk)n. Depending on the positioning

9 For instance, a system which has k fixpoints cannot be embedded in a subshift over less
than k symbols, but otherwise the symbolic extension may have, for example, zero entropy
and, except in the fixpoints, use, say, only two symbols.
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of the cutting places, x produces n different such strips, on the other hand n
points in the same orbit produce the same n strips. Let Sn be the collection
of all strips obtained in this manner from Per∗n. Clearly, #Sn = #Per∗n. Next,
in every strip from Sn we put a marker at the rightmost position in the row
number zero. By Sn we will denote the system consisting of all arrays which
are infinite bilateral concatenations of the strips from Sn. The row number
zero of each element x̂ ∈ Sn is n-periodic (one marker repeated every n-th
position). Notice that Sn contains n copies of each point x ∈ Per∗n, but they
differ from x in having markers in row number zero.

Definition 4.3 We define (X̂, T̂ ) as the closure of the union X ∪
⋃
n Sn with

the action of the usual shift.

We have the following trivial observations:

– The sets X and Sn are pairwise disjoint closed invariant subsets of X̂.
– By taking closure of the union X ∪

⋃
n Sn we only add arrays which are

limits of sequences of arrays belonging to the sets Sn with growing param-
eters n. Every such limit array either has no markers in the row number
zero, and then it belongs to X, or has just one marker and then it is not
recurrent. So the “added set” X̂ \ (X ∪

⋃
n Sn) is contained in the null set

of non-recurrent points of (X̂, T̂ ).
– If (Y, S) is a subshift (has only finitely many nontrivial rows) then so is

the enhanced system (Ŷ , Ŝ).
– Also notice that htop(Sn) = 1

n log(#Per∗n). For this reason, the topologi-
cal entropy of the enhanced system defined in the following lines is never
smaller than the “partial” supremum period capacity understood as the
supremum of the above entropies over all n.

The connection between symbolic extensions with (partial) embedding and
the enhanced systems is established by the Theorem 4.6 below and Theorem
4.11 in the next subsection. In the proof of the former we will need the following
notion and a lemma which refers to it. Note that in the lemma we do not
assume (Y, S) to be symbolic.

Definition 4.4 A finitary factor map from a topological dynamical system
(Y, S) to another, (X,T ), is a continuous equivariant surjection π : Y ◦ → X◦,
where Y ◦ and X◦ are dense invariant subsets with null complements in Y and
X, respectively.

Lemma 4.5 Let π : (Y, S)→ (X,T ) be a factor map between zero-dimensional
systems, admitting an equivariant selector ψ from preimages defined at least
on the sets Per∗n. Then there exists a finitary factor map between the enhanced
systems, π̂ : (Ŷ , Ŝ) → (X̂, T̂ ), such that π̂|Y = π, where the enhanced system
(Ŷ , Ŝ) is understood with respect to the sets ψ(Per∗n).

Proof For each n, ψ : Per∗n → ψ(Per∗n) is an equivariant bijection, thus it
determines a natural bijection between the set of strips Sn (appearing in the
elements of Per∗n) and the analogous set of strips Cn appearing in ψ(Per∗n)
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(recall that the strips in both these sets are equipped with a marker at the
last position in the row number zero). For c ∈ Cn we let π̂(c) denote the
corresponding strip in Sn.

The factor map π̂ will be defined on the union Y ∪
⋃
n Cn as follows:

– on Y we let π̂ = π,
– for ŷ ∈ Cn, which is a concatenation of some strips cj ∈ Cn (j ∈ Z),

we define π̂(ŷ) as the corresponding concatenation (in the same order and
positioning) of the vertical strips π̂(cj).

Obviously, π̂ sends Y ∪
⋃
n Cn onto X ∪

⋃
n Sn. Continuity of π̂ on Y and on

each set Cn is obvious. If some elements ŷni ∈ Cni tend to some y ∈ Y then
{ni}must grow to infinity and the strips cni ∈ Cn1

covering the zero coordinate
in ŷni must expand in both directions. This implies that π(y) and π̂(ŷni) agree
on a large rectangle whose both dimensions grow with i to infinity, which means
that lim π̂(ŷ) = π(y). We have proved continuity of π̂ on its domain.

Because the domain and range of π̂ are dense with null complements in Ŷ
and X̂, respectively, π̂ defines a finitary symbolic extension of (X̂, T̂ ). Clearly,
Ŷ contains Y , and π̂|Y = π, as required. ut

According to the following result, in case (Y, S) is a subshift, we can replace
the finitary extension by a topological one, without changing the extension
entropy function.

Theorem 4.6 Let π : (Y, S)→ (X,T ) be a symbolic extension with an equiv-
ariant embedding of the sets Per∗n. Then there exists a symbolic extension of
the enhanced system, π̆ : (Y̆ , S̆) → (X̂, T̂ ) such that hπ = hπ̆|MT (X), i.e., hπ

prolongs to an affine superenvelope of the entropy structure on (X̂, T̂ ).

Proof This is a direct consequence of Lemma 4.5 and a result of Serafin [Se09,
Theorem 1] which says that the family of extension entropy functions in fini-
tary symbolic extensions is the same as the analogous family for continuous
symbolic extensions, hence it coincides with the family of all affine superen-
velopes of the entropy structure. ut

4.2 Aperiodic extension of a zero-dimensional system

As a tool leading to reversing Theorem 4.6 we need a specific zero-dimensional
principal extension of the enhanced system. Since the construction is general,
we formulate it for any zero-dimensional system, but we will apply it later
only to (X̂, T̂ ).

Theorem 4.7 Let (X,T ) be any zero-dimensional system. There exists an
aperiodic zero-dimensional extension (X ′, T ′) of (X,T ), which is isomorphic
on aperiodic measures, while each periodic orbit of (X,T ) lifts to a collection
of odometers.
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Before the proof we establish some notation. Since (X,T ) is a subsystem
of the universal zero-dimensional system (X,T) defined as the full shift on
the Cantor alphabet, which can be modeled as the shift on all arrays using
in each row k some alphabet Λk (we can take any alphabets with #Λk ≥ 2),
it suffices to prove the theorem for (X,T). Once we extend (X,T) to some
(X′,T′) fulfilling the assertion of the theorem, we can then define (X ′, T ′) as
the preimage of (X,T ) in (X′,T′), and obviously this extension will do. The
advantage of working with (X,T) rather than (X,T ) is that we have guaranteed
the convenient property that the complement of any almost null set (see below
for definition) is dense. The extension (X′,T′) will be built by inserting in rows
k ≥ 1 of the arrays in (X,T) some markers using what we will call “almost
finitary algorithms” in the meaning defined below. This is not going to be a
system of markers in the sense of Section 2.2 (although it could be fine-tuned
to become one); to achieve aperiodcity a simplified arrangement of markers is
sufficient.

Definition 4.8 A measurable subset of a dynamical system will be called al-
most null if it has measure zero for all nonatomic invariant measures. In other
words, the set is a union of a null set and some periodic points. By an almost
finitary factor map from a topological dynamical system (X,T ) to another,
(X ′, T ′), we will mean a continuous equivariant map π : X0 → X ′, where
X0 ⊂ X is a dense invariant subset with almost null complement, and π(X0)
is dense in X ′.10

Putting markers in the universal array system (X,T) using an almost fini-
tary algorithm technically means that given an array x ∈ X0 (where X0 is
an invariant subset of X with almost null complement; its density in the uni-
versal system is then automatic), the decision whether a marker should be
put at a coordinate (k, i) depends on the contents of x in a finite rectangle
around that coordinate. Unlike in the case of continuous algorithms, the size
of this rectangle need not be uniformly bounded for coordinates ranging over
one row. The dependence on a finite rectangle may fail for x /∈ X0, i.e., for
arrays which are either periodic or belong to a null set. Once the markers are
distributed, we define a new system (X′,T′) as the closure of the collection of
all arrays with markers. The factor map from (X′,T′) to (X,T) consists simply
in erasing the markers and, thanks to the density of X0, this is a surjection. It
is obvious that this factor map is an isomorphism on aperiodic measures; the
almost finitary algorithm serves as the inverse map. This general scheme does
not let us control the lifts of periodic measures, which must be taken care of
with help of additional means.

In what follows, in the role of X0 we will be using the set of aperiodic
arrays which are recurrent both forward and backward. It is obvious that this
set is invariant and has an almost null complement.

Proof of Theroem 4.7 for (X,T) To allow markers, we need to enlarge the al-
phabets to Λ∗k = {a, a| : a ∈ Λk}. Recall that if (k, i) and (k, j), i < j, are

10 Notice that we do not require π(X0) to have almost null complement in X′. In fact,
some periodic measures of X may lift to aperiodic meaures supported by this complement.
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positions of two consecutive markers in row k of some array x with mark-
ers then the interval [i + 1, j] is called a gap between markers in row k while
the subarray x([1, k] × [i + 1, j]) is called the k-rectangle.11 We will say that
the k-rectangle matches a p-periodic pattern whenever xl,n = xl,n+p for all
1 ≤ l ≤ k, i + 1 ≤ n ≤ j − p, with one exception: the equality xk,j−p = xk,j
concerns only the symbols from Λk (xk,j contains the marker while xk,j−p does
not).

To improve readability, we isolate the first major stage of the construction
in a separate lemma.

Lemma 4.9 There exists an almost finitary algorithm defined on the set X0

of recurrent aperiodic arrays, distributing the markers in (X,T), respecting the
following rules:

(A) the gaps between markers in row k have lengths at least k,
(B) if a gap longer than 2k + 1 occurs then the corresponding k-rectangle (we

will call it long) matches a p-periodic pattern with a period p < k,
(C) for every array x ∈ X0, there are infinitely many indices k such that the

k-th row of x contains infinitely many markers going both forward and
backward.

Proof We begin by recalling the Krieger’s marker lemma in the version for
subshifts with periodic points (see [Bo83, Lemma 2.2]): In any subshift (Y, S),
for every K ≥ k > 1 there exists a clopen set F ⊂ Y such that:

(a) Si(F ) are pairwse disjoint for i = 0, 1, . . . , k − 1,

(b) X \
⋃k
i=−k S

i(F ) ⊂ (Per[1,k−1](Y, S))K , where the last set consists of points
y ∈ Y such that the block y[−K,K] matches a periodic pattern of some
period p < k.

We continue the proof in which we will apply several algorithms. In the
first one we distribute Krieger’s markers. We proceed inductively, as follows:
Step 1 is idle. Given k ≥ 2, denote by (X′k,T

′
k) the subshift in the top k rows of

(X,T) with the Krieger’s markers already introduced in rows 1 through k− 1.
Now we apply the Krieger’s lemma to (X′k,T

′
k) with the parameters K = k

and in this manner we obtain a clopen marker set Fk ⊂ X′k. We place markers
in row k of every array x ∈ X′k by the usual rule: if Six ∈ Fk then we place a
marker in x at the position (k, i). It is obvious that now the markers satisfy
the conditions (A) and (B) (See Figure 4.1). Because the sets Fk are clopen,
this algorithm is continuous at every point.

We need another algorithm in which we place so-called periodic markers.
They are meant to ensure that arrays belonging to so-called slow odometers
satisfy (C). An odometer consist of arrays in which all rows are periodic with
unbounded minimal periods. An odometer is slow if for all except finitely many
indices k, the periodic pattern in the top k rows has minimal period less than k.

11 Since we do not require that the corresponding marker sets are nested, a k-rectangle is
enclosed by markers only in row k, not in every row 1 through k like on the Figure 2.1.



24 David Burguet and Tomasz Downarowicz

Fig. 4.1 Placement of Krieger’s markers. The gray areas contain periodic patterns with
periods 1, 2 and 6. In rows 1 through 4 the markers are missing (infinitely long gaps). The
gaps is rows 5,6,7 and 8 are finite but long.

In arrays belonging to such odometers, although they are aperiodic, Krieger’s
markers appear only in finitely many rows. This must not be admitted and
here is what we do:

Again we proceed by induction, and skipping the first step we pass to
k ≥ 2. As before, we let (X′k,T

′
k) denote the subshift in the top k rows of

(X,T) with all the Krieger’s markers already introduced. Each periodic orbit
in X′k with minimal period p < k can be identified with a periodic pattern in
the top k rows, understood up to shifting. For every such pattern we select
and fix one out of p possible ways of distributing in this pattern some future
markers periodically: one for every p positions. Once this is established, in
every element x ∈ X′k we search for long k-rectangles. As we know, every such
rectangle matches a p-periodic pattern of minimal period p < k. Now, within
each long k-rectangle we place new markers one every p positions exactly as
it was decided for the corresponding pattern, but not in row number k only
in row number p, and skipping all these markers which would fall closer than
p positions away from any markers already put in that row.12 This concludes
the k-th step of the induction (see Figure 4.2).

Fig. 4.2 Periodic markers in rows 1, 2 and 6. Note that periodic markers fall in a row k > 1
only when the period of the top k rows (within some long rectangle) is strictly less than k,
thus their placement increases that period. This is how we get rid of slow odometers (still,
each slow odometer is replaced by a conjugate model).

12 This practically means that either there already are some markers (Krieger’s or periodic
put in a preceding step) appearing one every p positions, and then we do not put any markers
in this step, or there are only Krieger’s markers outside the long k-rectangle and we need
to mind only the two closest external ones.
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Once the induction is completed, the markers obviously satisfy the con-
ditions (A) and (B). We will prove also (C). Consider an array x ∈ X0 with
all the markers put in so far. As we will show in the next paragraph, each
marker is put in x by a rule continuous on the invariant set X0. Since x is
forward and backward recurrent, each row of x contains either infinitely many
markers (in both directions) or no markers at all. If (C) fails, markers must be
completely missing in all sufficiently far rows of x. But then, by (B), for every
k, the contents of the top k rows is periodic. If the periods were unbounded
as k increases, we would have periodic markers in infinitely many rows. So the
periods are bounded and thus x is periodic hence cannot belong to X0. This
way or another we arrive at a contradiction.

We shall now analyze the discontinuity points of the second algorithm,
i.e., identify the arrays of x ∈ X0 in which some periodic markers cannot
be predicted by viewing bounded rectangles. We focus on a coordinate (k, i)
at which there is no marker in x (once a marker is put in some step of the
induction, which happens with reference to a bounded rectangle, it is never
removed afterwards). In order to determine periodic markers in row k near the
position i we need to look at larger rectangles in the top k′ rows for k′ > k.
Once the coordinate i falls in a gap in row k′ shorter than or equal to 2k′ + 1
(but never shorter than k′), then we are sure that periodic markers will not
appear in row k within this gap, because in step k′ periodic markers do not
apply, while in all further steps the smallest period of any periodic pattern
containing this gap in row k′ is at least as large as the gap, i.e., not less than
k′, so the periodic markers would go to a row with number at least k′. On
the other hand, if for each k′ ≥ k the coordinate i falls in a long gap then
the corresponding k′-rectangles contain periodic patterns with nondecreasing
periods. Once the period reaches or exceeds k, we can stop looking further: the
periodic markers in row k (near the coordinate i) are already decided. The only
case in which we are “never sure”, is when i falls in long k′-rectangles for all
k′ > k and each time the period of the corresponding pattern is smaller than
k. Such an array x is obviously periodic on at least one side of the coordinate
i. So, x is either periodic or belongs to the null set of nonrecurrent points, i.e.,
does not belong to X0, which ends the proof. ut
Remark 4.10 If we apply this proof to a system (X,T ) such that Pern(X,T )
is finite for every n, then all periodic markers can be predicted by looking at
finite areas, hence the above algorithm is in fact continuous.

We continue with the proof of Theorem 4.7 by applying two further al-
most finitary algorithms to put even more markers in the arrays with markers
obtained in the preceding lemma. This time we aim to producing markers
satisfying

(D) for every array x ∈ X0, there are infinitely many markers in every row,
going both forward and backward,

(E) the gaps in row k have lengths ranging between k and 2k − 1.

First we apply so-called upward stretching : we copy every marker from row
k to all rows with indices k−1, k−2, ... until we reach a row l < k in which the
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marker would fall l or less positions away from some marker (then we do not
copy it to rows with indices ≤ l), or till row 1 (see Figure 4.3). In this manner

Fig. 4.3 The upward stretching. New markers shown in black.

we maintain the property (A) (which is included in (E)). Clearly, because of
(C), after applying this algorithm we have satisfied (D). Let us analyze the
discontinuities. Suppose (k, i) is a position in an array x where, by looking
at no matter how large finite area, we always admit a marker coming later
by upward stretching from some far row. This is possible only if there are no
markers in the “triangular area” between i− k′ and i+ k′ for all rows k′ > k;
every marker in this area would stop any potential upward stretching arriving
to (k, i) (see Figure 4.4). Since the width of the triangular area in row k′ equals

(k,i)

Fig. 4.4 The “triangular area” and markers blocking the upward stretching toward the
position (k, i).

2k′ + 1, this means that i belongs to a long gap in row k′, and thus to a long
k′-rectangle, and these rectangles expand in both directions as k′ grows. Thus,
by (B), x is either periodic, or belongs to an odometer. But in every odometer
there exists a row k′ such that the period p of the pattern in the top k′ rows is
larger than k, resulting in periodic markers in row p > k. At least two of these
markers would appear in the above mentioned triangular area, which excludes
this case. We have shown that the algorithm is discontinuous only at periodic
arrays, hence it is almost finitary.

The last algorithm, which we are about to apply, will reduce the gap sizes
in every row k to at most 2k − 1 (without decreasing the lower bound k) as
required in (E). We call it the leftward stretching : for every k, every marker in
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row k appearing at a position i is copied in the same row at positions i−k, i−2k,
etc., until we arrive within less than k positions away from some marker in this
row (or till minus infinity) (see Figure 4.5). It is obvious that the algorithm

Fig. 4.5 Leftward stretching. New markers shown in black.

reduces the gap sizes as required. Also, thanks to (D), it is continuous at every
point of X0, hence almost finitary. This ends the description of the algorithm
of placing markers in the universal system.

We recall the at this moment we define the extension (X′,T′), as follows:
We take all arrays from the (dense) set X0 on which the algorithm is continuous
and produces arrays with markers satisfying (D) and (E). It is clear that these
properties pass to the closure of the set of so created arrays with markers, and
that arrays with so distributed markers are never periodic. So, letting X′ be
the closure of this collection of arrays with markers, we obtain an aperiodic
system. The factor map consisting in erasing all markers sends X′ onto X (here
we use the density of X0 in X). This map is invertible on X0; the algorithm of
placing the markers serves as the inverse map and, by continuity, X′ contains
no points projecting to X0 other than those obtained by this algorithm. This
implies that (X′,T′) extends (X,T) isomorphically for all aperiodic measures.
It remains to examine the lifts of periodic arrays (we need them to be elements
of odometers, i.e., have all rows periodic).

Let x be a periodic array of period p in the system (X,T) and let {xj : j ≥
1} ⊂ X0 be a sequence approaching x. We assume that the arrays xj equipped
with all due markers (denoted x′j) converge to some x′ ∈ X′. Then x′ is a lift
of x and all lifts of x are obtained in this manner. Given k, we will analyze the
markers in the “test interval” [−m,m] in row k of x′jm , for some m and jm so
large such that the array xjm matches x on [1, 2m]× [−2m, 2m]. In particular,
in this rectangle xjm is periodic with the period p. If k < p, x′jm has, in the
test interval, markers occurring p-periodically. Consider the case k ≥ p. There
are several possibilities for x′jm :
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1. The “triangular area”
⋃
k′≥m({k′}× [−k′, k′]) contains no Krieger’s mark-

ers.13 By the rule (B), which is satisfied by Krieger’s markers alone, xjm
represents a slow odometer. We will come back to this case later.

2. Otherwise let k0 be the smallest index k′ ≥ m such that a Krieger’s marker
is inserted within [−k′, k′] in row k′ of x′jm . Since the rows k through 2m of
xjm are p-periodic along [−2m, 2m], there are no Krieger’s markers there,
and thus k0 > 2m. As before, the rectangle [1, k0 − 1] × [−k0 + 1, k0 − 1]
of xjm still contains a periodic pattern with a period p0 ∈ [p, k0 − 1]. Now
we have two subcases:
(a) If p0 ≥ k then periodic markers occur in row p0 across [−k0−1, k0−1].

These markers prevent any markers in further rows from affecting the
test interval by upward stretching, i.e., the markers in the test interval
(in x′jm) depend only on the (periodic) rows 1 through k0 − 1 of xjm ,
just as if xjm belonged to a slow odometer.

(b) If p0 < k then the test interval has no Krieger’s markers, no periodic
markers of its own period and no markers upward stretched from rows
up to k0 − 1. It may (but need not) receive a marker upward stretched
from row k0 or further and clearly such a marker is then unique. We will
call it the intrusion. Then, in spite of the intrusion, the test interval will
eventually have only markers generated by leftward stretching, which
will occur precisely one every k positions, with one possible larger gap
to the right of the intrusion (but still, not larger than 2k−1; see Figure
4.6).

Fig. 4.6 An array which up to row 9 matches a 7-periodic pattern. The marker in row 10
creates, by upward stretching, intrusions in rows 9 and 8. In row 8 (accidentally) all gaps
have the same length 8, in row 9 there appears an exceptional larger gap. Periodic markers
in row 7 generate intrusions in rows 6, 5, . . . , 2, but only in rows 2 and 3 there is enough
room for leftward stretching.

If for all m we have the case (2b), then x′ has in row k markers appearing
k-periodically with one possible larger gap, hence either the k-th row of x′ is
periodic with the period LCM(p, k) or x′ is not recurrent.

13 Although the marker symbols do not allow to distinguish between Krieger’s, periodic
and stretched markers, we can always determine Krieger’s markers by removing all markers
and repeating the first (continuous) algorithm.
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It remains to see what happens in row k of x′j when xj belongs to a slow
odometer. Then in row k we have either periodic markers at every k-th position
and no markers otherwise, or stretched up periodic, occurring one every k′

positions for some k′ ≥ k, and leftward stretched subdividing the gaps between
the periodic markers into gaps of lengths k and one perhaps longer gap, up
to 2k − 1 (only if k′ ≥ 2k; this situation is seen on Figure 4.6 for example in
row 2). If the parameter k′ grows with increasing j, then eventually there will
be at most one longer gap in the k-th row of x′ and we are back in the case
described earlier. Finally, if k′ is bounded (then we can assume it is constant)
as j increases, then the row k in x′ has markers occurring with period k (if
k′ is a multiple of k) or k′, and the k-th row of x′ is perioidc with the period
LCM(p, k) or LCM(p, k′). Summarizing, x′ is either not recurrent, or all its
rows are periodic (with unbounded periods), hence it belongs to an odometer.
This concludes the proof. ut

4.3 Building a symbolic extension with partial embedding

We can now prove a theorem converse to Theorem 4.6 (even a bit stronger
than verbatim the converse, because in that theorem we did not assume an
embedding of aperiodic measures). Recall that we have fixed the finite sets
Per∗n and meaning of the enhanced system depends upon this choice. Also
recall that by a partial embedding we mean an equivariant measurable selector
from preimages defined except on an almost null set being a union of a null
set and the periodic points not belonging to

⋃
n Per

∗
n.

Theorem 4.11 Suppose π̆ : (Y̆ , S̆) → (X̂, T̂ ) is a symbolic extension of the
enhanced system. Then there exists a symbolic extension π : (Y, S) → (X,T )
with partial embedding and such that hπ = hπ̆|MT (X).

Proof We let π′ : X̂ ′ → X̂ be the natural factor map (deleting the markers)
from the aperiodic extension constructed in Theorem 4.7 for (X̂, T̂ ). We will
use the fact that π′ is a “one-block code”, i.e., that each symbol in the image
array depends only on the corresponding one symbol in the source. At this
point it will be convenient to completely forget that the extension (X̂ ′, T̂ ′)
is equipped with some markers. We will soon need to introduce in (X̂ ′, T̂ ′)
an entirely new system of markers, hence remembering the old ones would
only obfuscate the picture. We only need to remember that (X̂ ′, T̂ ′) is an
aperiodic, isomorphic on aperiodic measures and principal (periodic measures
lift to odometers) zero-dimensional extension of (X̂, T̂ ) represented as an array
system and that the factor map π′ is a one-block code. Recall that the arrays in
X̂ have a special row number zero containing, in arrays belonging to Sn, some
n-periodically repeated single markers, otherwise it is empty or contains just
one marker. We can attach this row number zero to the elements of (X̂ ′, T̂ ′)
(in x̂′ ∈ X̂ ′ we copy the row number zero from π′(x̂′)). The markers in the row
number zero will be called the dominant markers (they have nothing to do with

the markers introduced while building (X̂ ′, T̂ ′)). We denote S′n = π′
−1

(Sn).
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Clearly an array x̂ ∈ X̂ ′ belongs to S′n if and only if it has markers in the row
number zero at every n-th position.

Now, we are given a symbolic extension (Y̆ , S̆) of (X̂, T̂ ), which realizes
some affine superenvelope Ê of the entropy structure of (X̂, T̂ ) as the extension
entropy function. Since (X̂ ′, T̂ ′) is a principal extension of (X̂, T̂ ), (Y̆ , S̆) can be
principally extended to a symbolic extension of (X̂ ′, T̂ ′). This fact is proved for
example in [BD05, Theorem 7.5]. Thus, by change of notation, we can replace
(Y̆ , S̆) by this new symbolic extension of (X̂ ′, T̂ ′), because it is also a symbolic
extension of (X̂, T̂ ) and yields the same extension entropy function Ê. Since
(X̂ ′, T̂ ′) is aperiodic, by Theorem 3.1 there exists another symbolic extension
of (X̂ ′, T̂ ′), this time with an embedding, which has the same extension entropy
function (the lift of Ê toMT̂ ′(X̂

′)). So, we can assume that (Y̆ , S̆) is such an

extension. We have the following factor maps π̆′ : Y̆ → X̂ ′, π′ : X̂ ′ → X̂ and
π′ ◦ π̆′ = π̆ : Y̆ → X̂.

The factor map π̆ leading from (Y̆ , S̆) to (X̂, T̂ ) and restricted to the preim-
age of (X,T ) provides a symbolic extension with an embedding of aperiodic
measures and with the extension entropy function equal to the restriction of
Ê to MT (X). The only remaining problem is to include in this extension, for
each n, n-periodic points which would map injectively and onto Per∗n, without
increasing the entropy function of the extension (measurability is trivial, as
we are including a countable set).

The factor map π̆′ from (Y̆ , S̆) of (X̂ ′, T̂ ′) is obtained via Theorem 3.1,
hence it is of special form, which we call standard, that is, it refers to some k-
rectangles, equivalently, to a system of markers (in the meaning of Section 2.2),
and then uses some disjoint “lists of preimage blocks” of these k-rectangles.
As we have mentioned earlier, the system of markers used for this purpose
must satisfy two conditions:

(a) the sequence {pmin
k } must grow sufficiently fast, where the speed is de-

termined by the system, the choice of the partitions defining the array
representation, and by the affine superenvelope Ê,

(b) be balanced (i.e.,
pmin
k

pmax
k

must tend to 1).

We will need the following

Lemma 4.12 In the aperiodic system (X̂ ′, T̂ ′) equipped with the row number
zero containing the dominant markers there exists a system of markers sat-
isfying the conditions (a), (b) and (c) formulated below, for some tending to
infinity sequence of integers k(n):

(c) if x̂ ∈ S′n then each dominant marker copied to rows 1 through k(n) is used
by the system of markers

(in other words, the rectangle in the top k(n) rows between two dominant
markers is a concatenation of complete k(n)-rectangles).

Proof We only outline the proof, which consists in two steps, both being con-
tinuous algorithms of placing and adjusting the markers.
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Step 1: we choose a sequence {mk} such that the numbers mk − (m1 +
· · ·+mk−1 +k−1) satisfy (a) and we let nk = 2mk(mk + 1). Then we let k(n)
be the unique integer k such that nk ≤ n < nk+1. Now, in arrays belonging to
S′n, we copy all the dominant markers in rows with numbers k ∈ {1, . . . , k(n)}.
Next, we apply the Krieger’s markers skipping those which fall (in their rows
k) closer than nk positions away from the copied dominant markers. Finally,
we apply the upward adjustment, which clearly does not move the dominant
markers, because they are already upward adjusted. In this manner we obtain
a preliminary system of markers with pmin

k ≥ nk
2 ≥ mk(mk + 1) (at this point

pmax
k is just finite).

Step 2: By subdividing (see the description few lines below Figure 2.1)
we obtain a new, denser (thus still satisfying (c)) and balanced (as required
in (b)) system of markers. All rectangle lengths are now bounded below by
mk− (m1 + · · ·+mk−1 +k−1), hence the new system of markers satisfies also
(a). ut

From now on, we can assume that π̆′ : Y̆ → X̂ ′ is a standard symbolic ex-
tension of (X̂ ′, T̂ ′) built using a system of markers satisfying (a), (b) and (c).
Recall also that the standard symbolic extension consists of elements y̆ with
two rows, the first one responsible for memorizing the positions of all markers
in x̂′ = π̆′(y̆), and the second one, where the “preimage blocks” occur. The
advantage of a standard symbolic extension over an arbitrary symbolic exten-
sion is that a k-block in y̆ (lying between two markers of order k) determines
the entire k-rectangle lying underneath in x̂′, without missing the margins, as
it may happen in a general symbolic extension (see Remark 4.13 and Figure
4.7). Unfortunately, in order to locate the markers of order k we may need
to see not only the k-block between them in the first row of y̆, but also some
context. We will need to take care of this small inconvenience.

Define S̆n ⊂ Y̆ = π̆′−1(S′n) = π̆−1(Sn). These subsystems are pairwise
disjoint (because so are the Sn’s). Now we apply a very simple trick: we equip
each y̆ ∈ Y̆ with an extra row (number zero) which is a copy of the row number
zero of π̆′(ŷ) (the same as the row number zero in π̆(y̆), and which is essentially

nontrivial only if y̆ ∈ S̆n). This trick is clearly a conjugacy, but it allows to
locate the dominant markers in Y̆ without referring to any context. Let n-
words be the blocks of length n appearing in S̆n and ending with a marker in
the row number zero. Now, whenever in an element y̆ ∈ Y̆ we see a block B of
length n, ending with a marker in the row number zero and directly preceded
on its left by another marker in this row, then:

– We know that y̆ ∈ S̆n and that B is an n-word.
– Using the first row of B (containing the encoded markers), we can deter-

mine without any further context all markers of orders 1 through k(n) that
fall within B—this is a consequence of Lemma 2.1.

– We can thus determine (also without any further context) the complete
contents of the top k(n) + 1 rows of π̆′(y̆) ∈ X̂ ′ (counting also the row
number zero), along the n horizontal positions occupied in y̆ by B—this
is due to the construction of a standard symbolic extension π̆′ and the
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condition (c) of Lemma 4.12, according to which, this part of π̆′(y̆) ∈ X̂ ′
is a concatenation of some complete k(n)-rectangles. Next, applying the
one-block code π′ we determine the contents (call it R(B)) of the same
area in π̆(y̆) ∈ X̂.

– Furthermore, since y̆ ∈ S̆n we know that π̆(y̆) ∈ Sn. Since B is enclosed
between a pair of dominant markers, the reconstructed rectangle R(B) is
part of some vertical strip s ∈ Sn.

We continue as follows: We fix some n and for each strip s ∈ Sn let Wn(s)
be the family of all n-words which occur “above” s in preimages by π̆. These
sets are obviously nonempty, and need not be disjoint for different strips, but
only when the strips agree in the top k(n) rows. We will now find an injective
selector from the families Wn(s).14 Observe that these families satisfy the
Hall’s marriage condition: for any nonempty subset S ⊂ Sn, let S be the
collection of all free concatenations of the strips from S. Clearly, S being a
subsystem of Sn has a preimage in Y̆n of entropy not smaller than that of
S. Because S uses all possible concatenations of its “alphabet” S, while the
above preimage uses at most all concatenations of its “alphabet”

⋃
s∈SWn(s),

the latter “alphabet” must be at least as numerous as the former. The Hall’s
Marriage Theorem now provides an injection assigning to every strip s ∈ Sn
an n-word Ws ∈ Wn(s). At this point, for each n and each s ∈ Sn we add
to Y̆n the n-periodic orbit of the sequence created by repetitions of the n-
word Ws, and we define the factor map on this orbit by sending it onto the
n-periodic orbit of the point x ∈ X̂ consisting of repetitions of the strip s.
The map should preserve the positioning of the dominant markers. By taking
closure, the resulting enlarged symbolic space, denoted by Y̆ ∗, includes also
some, perhaps new, points with just one marker in the row number zero. We
will define their images by the factor map in a moment.

Observe that (Y̆ , S̆), extending the aperiodic system (X̂ ′, T̂ ′), is aperiodic,
so all the added periodic points are isolated and there is no collision in defining
the factor map on them. The only points where continuity of the factor map
has to be checked, are the limit points of sequences of periodic points with
growing periods. But for periodic points with large periods n the images are,
in the initial k(n) rows, coherent with the standard code defined by the oracle
(and composed with the one-block code from X̂ ′ to X̂). So, in the discussed
limit points (regardless of whether these points belong to Y̆ or are newly
added), the factor map fully coincides with the standard factor map, due to
the fact that k(n) tends to infinity. This means that we have just constructed a
continuous factor map π̆∗ from (Y̆ ∗, S̆∗) onto its image (X̂∗, T̂ ∗) with partial
embedding of the sets Per∗n. In fact X̂∗ = X̂ because the enhanced system
already contains all possible points with just one marker in the row number
zero (alternatively, we can restrict Y̆ ∗ to the preimage of X̂). Clearly, π̆∗ has
the same extension entropy function as π̆, because we have added at most

14 This is the place in the proof where it becomes essential that (Y̆ , S̆) extends not just

(X,T ) but also the enhanced system (X̂, T̂ ). By referring to the topological entropies of the
subsystems S ⊂ Sn we implicitly involve some “local” limit periodic capacities of (X,T ).
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countably many preimages to some points. We can now define (Y, S) as the
preimage by π̆∗ of (X,T ) (recall that (X,T ) is a subsystem of (X̂, T̂ ) and
contains the sets Per∗n) and this is our desired symbolic extension with partial
embedding. ut

The reader uninterested in explanations concerning technicalities in the
preceding proofs may pass to Corollary 4.14.

Remark 4.13 In both Theorems 4.5 and 4.11 we are dealing with similar prob-
lems of continuously gluing two factor maps: “basic”, which is a priori given
between some basic system and its basic symbolic extension, with another,
“artificially” defined between closed sets added to both spaces, consisting of
concatenations of pieces occurring in the basic systems and separated by dom-
inant markers (included in the system of all markers). In general, the artificial
code agrees with the basic code on regions stretching in some number of initial
rows, except on some margins stretching left and right from each dominant
marker (resulting from the coding length, usually growing with the row num-
ber), as shown on the Figure 4.7(a) below. Some points in the basic systems
can be approached by the added concatenated points with increasing distances
between the dominant markers, so that these limit points may have at most
one dominant marker. At points which have such a marker (the juxtaposed
elements), the area where the codes agree need not cover the whole array, as
shown in gray on Figure 4.7(b). In Theorem 4.5 the extension is given a pri-
ori and we cannot assume that it has any special properties. It particular, it
cannot be standard, because it embeds some periodic orbits, while a standard
symbolic extension is always aperiodic. So here the continuous gluing is not
guaranteed. Fortunately, in that theorem we can afford the glued extension to
be only finitary (and then use a general theorem to replace it by a continuous
one).

In Theorem 4.11, on the other hand, constructing a finitary extension with
partial embedding might be insufficient, because while replacing it by a con-
tinuous one, we would most likely destroy the embedding. Fortunately, this
time we are free to choose the starting symbolic extension as we wish, so we
choose a standard one, in which the area where the codes agree stretches from
marker to marker, without any margins, as shown on Figure 4.7(c). Then,
in the “questionable” limit points with just one dominant marker, this area
covers the whole array, and thus the continuous gluing is successful (Figure
4.7(d)).

We can now formulate the combined result which characterizes the entropy
functions in symbolic extensions with an embedding.

Corollary 4.14 Let (X,T ) be a zero-dimensional system (or a system with
small boundary property) in which we select and fix some finite families Per∗n ⊂
Pern(X,T ). Let E be a function on MT (X). The following conditions are
equivalent:

1. There exists a symbolic extension π : (Y, S) → (X,T ) with partial embed-
ding and with hπ ≡ E.
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Fig. 4.7 The area of a concatenated element where both codes agree.

2. E coincides with the restriction to MT (X) of a finite affine superenvelope
Ê of the entropy structure of the enhanced system (X̂, T̂ ).

Remark 4.15 We can now prove that the existence of any, not necessarily
measurable, partition P with diam(P [−n,n]) → 0 implies the existence of a
measurable one (i.e., of a uniform generator). For a non-measurable P the
first part of the proof of Theorem 1.2 produces a symbolic extension with a
perhaps non-measurable equivariant selector from preimages. However, such a
selector is measurable on the set of periodic points, because this set is countable
(being injectively mapped into the countable set of periodic points of a subshift
it is fact finite for every period). Thus Theorem 4.6 applies (with Per∗n =
Pern(X,T )) producing a symbolic extension of the enhanced system. Now,
we can apply Theorem 4.11 to obtain a symbolic extension of (X,T ) with a
measurable embedding. Finally, the other implication of Theorem 1.2 yields
a (measurable) uniform generator. The considerations in the last section (see
Theorem 6.5) imply that the cardinality of the uniform generator can be chosen
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the same as that of the initial non-measurable partition, because they both
lead to symbolic extensions with the same topological entropies.

5 The period tail structure

We have provided some characterization of the extension entropy functions in
symbolic extensions with an embedding or partial embedding (the finite sets
Per∗n ⊂ Pern(X,T ) are selected and fixed throughout). But since it refers to
the somewhat artificial object, the enhanced system, we are not fully satisfied
and the task is now to give a more direct description of these functions. We
will give such a characterization, relying on a new notion, which we call the
period tail structure, combined with the “old” entropy structure.

Definition 5.1 Let (X,T ) be a zero-dimensional dynamical system with se-
lected sets Per∗n and let {Pk} be some fixed refining sequence of clopen parti-
tions. On each set Per∗n we define the following sequence of functions

Pk(x) = 1
n log #{x′ ∈ Per∗n : x′ has the same Pk-name as x}.

These functions are constant on orbits, so we can naturally associate their
values to the ergodic measures supported by these orbits. On other ergodic
measures we let all these functions equal zero. The functions are then prolonged
by integration over the ergodic decomposition15 to the whole of MT (X). So
established sequence of functions Pk : MT (X) → [0,∞) will be called the
period tail structure.

Since the sets Per∗n are finite, it is clear that given n, the partition Pk with large
enough k separates all points in Per∗n, hence the functions Pk are zero on them.
This implies that the sequence {Pk} tends (obviously nonincreasingly) to zero
pointwise on ergodic measures, and thus also on the entire set MT (X).16

In order to formulate how the period tail structure determines the desired
extension entropy functions, we need to recall the concept of a repair function.
It is closely related to that of a superenvelope, however, in some sense it
eliminates the influence of the limit function. Full details are presented in
[Do05] or in the book [Do11].

Definition 5.2 Let {θk} be a nonincreasing and pointwise converging to zero
sequence of functions defined on a compact domain. By a repair function we

mean any nonnegative function u such that ũ+ θk − (u + θk) → 0 pointwise
in k (f̃ denotes the upper semicontinuous envelope of a function f).

15 Further, we will refer to such a prolongation as harmonic. Harmonic prolongations are
harmonic functions, i.e., respect integral averaging, which is in general a stronger condition
than just being affine. However, upper semicontinuous affine functions are harmonic.
16 In order for a symbolic extension with partial embedding to exist, we must assume that

the “partial” supremum periodic capacity supn
1
n

log(#Per∗n) is finite. This enables us to
apply the Lebesgue Dominated Convergence Theorem.
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The above convergence can be simplified as ũ+ θk → u (nonincreasingly),
hence a repair function is always upper semicontinuous. In the definition we
have used a more complicated formula just to highlight the interpretation of a
repair function: added to the functions θk it repairs them in the sense that the
defects of upper semicontinuity eventually vanish at every point. An equivalent
repair condition is: given a point µ in the domain and ε > 0 we have

lim
i

(u+ θk)(µi) ≤ (u+ θk)(µ) + ε, (5.1)

for k large enough (the threshold depending on µ and ε), whenever µi → µ.
Observe also that if u repairs {θk} then u ≥ limk θ̃k.17

We have the following fairly obvious duality statement, whose easy proof
is left to the reader (it can also be found in [Do11]):

Fact 5.3 Let {hk} be a sequence of functions on a compact domain, converg-
ing pointwise and nondecreasingly to a finite limit function h, and such that
hk+1−hk is upper semicontinuous for every k. Then E is a superenvelope for
{hk} if and only if E−h is a repair function of the sequence of tails {h−hk}.

We also need the lemma below:

Lemma 5.4 Let {θk} be as in Definition 5.2 and let u1 = limk θ̃k. Then for
every sequence xk → x in the domain we have

lim
k
θk(xk) ≤ u1(x),

and for each x there exists a sequence xk → x for which the above inequality
is an equality.

Proof By monotonicity, θk(xk) ≤ θj(xk) whenever j ≤ k. Thus

lim
k
θk(xk) ≤ lim

k
θj(xk) ≤ θ̃j(x),

for each j. Taking limit over j we can replace right hand side by u1(x). Further,
given x, for each k there exists xk which is 1

k -close to x (xk can be equal to x)

and θ̃k(x) ≤ θk(xk) + 1
k . Then, for each k,

u1(x) ≤ θ̃k(x) ≤ θk(xk) + 1
k ,

hence the reversed inequality follows. ut

We are in a position to give the promised characterization:

Theorem 5.5 The following statements about a nonnegative function E on
MT (X) are equivalent:

17 Equality holds when the sequence {θk} has so-called order of accumulation 1. In general,
the smallest repair function is obtained by repeating an iterative procedure as many times
as the order of accumulation, which is always a countable ordinal. See [Do05] or [Do11] for
more details.
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1. E = hπ for some symbolic extension π : (Y, S) → (X,T ) with partial
embedding;

2. E is an affine superenvelope of the entropy structure {hk} and E ≥ h+u1,

where u1 = limk P̃k.

Before the proof we relate Pk with the tails of the entropy structure of
the enhanced system. We view (X,T ) in the array representation generated
by the sequence of clopen partitions {Pk} and we create the enhanced system
(X̂, T̂ ) using this representation. In order to differentiate between the entropy
functions and structures on (X,T ) and on (X̂, T̂ ), in the latter case we will

write ĥ and ĥk, respectively.

Lemma 5.6 If µ is periodic supported by Per∗n and k ≥ 1 is such that Pk(µ) >
0, then there exists an invariant measure µ(k) supported by Sn, such that
Pk(µ) = (ĥ − ĥk)(µ(k)). For other ergodic measures µ (with Pk(µ) = 0) we
let µ(k) = µ and finally we prolong the assignment µ 7→ µ(k) harmonically to
a map MT (X)→MT̂ (X̂). Then

Pk(µ) ≤ (ĥ− ĥk)(µ(k)).

The weak-star distance between µ and µ(k) does not exceed some δk which tends
to zero with k.

Proof Namely, when µ is periodic supported by Per∗n, then µ(k) is the measure
of maximal entropy among those in MT̂ (Sn) which have the same (periodic)
projection on the top k rows factor Xk as µ. The verification is fairly obvious
and we skip it. ut

Lemma 5.7 Conversely, if µ is supported by Sn, then there exists a convex
combination µ̌ ∈ MT (X) of the periodic measures supported by Per∗n, such
that, for every k,

(ĥ− ĥk)(µ) ≤ Pk(µ̌).

The weak-star distance between µ and µ̌ does not exceed some γn which tends
to zero with n.

Proof Namely, µ̌ is the convex combination
∑
s∈Sn µ([s]) · µs, where µs is the

periodic measure supported by the orbit of the array obtained by concatenat-
ing repetitions of the strip s, and [s] denotes the cylinder associated to the
strip s. Again, the fairly obvious verification will be skipped. ut

Proof of Theorem 5.5 By Theorem 2.6 and the duality Fact 5.3, the extension
entropy function hπ in a symbolic extension with partial embedding equals
h+u where u is an affine repair function of the entropy tail structure {h−hk}.
The implication (1) =⇒ (2) will be proved once we show that u = hπ − h is
larger than or equal to u1.

By Corollary 4.14, the function hπ in a symbolic extension with partial
embedding coincides with the restriction toMT (X) of an affine superenvelope
Ê of the entropy structure of the enhanced system. The duality Fact 5.3 implies



38 David Burguet and Tomasz Downarowicz

that Ê = ĥ + û where û is an affine repair function of the sequence of tails
{ĥ − ĥk}. Since ĥ|MT (X) = h, we have û|MT (X) = u. By the second part
of Lemma 5.4, for any µ ∈ MT (X) there exists a sequence (µk) in MT (X),
converging to µ, and such that

u1(µ) = lim
k

Pk(µk) ≤ lim
k

(ĥ− ĥk)(µ
(k)
k ),

where the latter inequality refers to measures µ
(k)
k produced for each µk by

Lemma 5.6. Since these measures also converge to µ, the first part of Lemma
5.4 yields that the right hand side above does not exceed

lim
k

˜(ĥ− ĥk)(µ) ≤ lim
k

˜(û+ ĥ− ĥk)(µ) = û(µ) = u(µ).

This completes the proof of (1) =⇒ (2).

The implication (2) =⇒ (1) will be proved using two further lemmas.

Lemma 5.8 Let {θ̂k} be a nondecreasing and pointwise converging to zero

sequence of functions on a compact domain M̂. Let θk = θ̂k|M, θ′k = θ̂k1M̂\M,

whereM is a compact subset of M̂. If u repairs {θk} onM, u′ repairs {θ′k}
on M̂ and u ≥ u′|M, then û defined as u on M and u′ on M̂ \ M repairs

{θ̂k}.

Proof We will verify the repair condition (5.1) for û and {θ̂k}. Let µi → µ in
M̂. If µ ∈ M̂\M then µi ∈ M̂\M for large i and the repair condition follows
from the properties of u′. If both µ ∈M and µi are inM, the condition follows
from the properties of u. In the remaining case µ ∈M, µi ∈ M̂ \M we have,
for large k,

lim
i

(û+θ̂k)(µi) = lim
i

(u′+θ′k)(µi) ≤ (u′+θ′k)(µ)+ε ≤ u(µ)+ε ≤ (û+θ̂k)(µ)+ε.

ut

Lemma 5.9 On the (compact) set M̂ = MT (X) ∪
⋃
nMT̂ (Sn) (with M =

MT (X)) define u′ as u1 = limk P̃k on M and zero otherwise. Then u′ repairs

the sequence of entropy tails θ′k = (ĥ− ĥk)1M̂\M .

Proof We need to verify the repair condition (5.1) for µi → µ in M̂. If µ /∈
MT (X) then both µ and µi with large i belong toMT̂ (Sn) for some n (the sets

Sn \X are open). Since Sn is expansive, {ĥ− ĥk} is upper semicontinuous on
MT̂ (Sn), hence u′ = 0 verifies the repair condition. If both µ and all µi ∈M
then, since u1 is upper semicontinuous, we have

lim
i

(u′ + θ′k)(µi) = lim
i
u1(µi) ≤ u1(µ) = (u′ + θ′k)(µ).
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In the case µ ∈ M and µi ∈ M̂ \ M we have µi ∈ MT̂ (Sni), where the
indices ni grow to infinity. Then we invoke the measures µ̌i provided for µi by
Lemma 5.7. They are supported by X and also converge to µ, thus

lim
i

(u′+θ′k)(µi) = lim
i
θ′k(µi) ≤ lim

i
Pk(µ̌i) ≤ P̃k(µ) ≤ u1(µ)+ε = (u′+θ′k)(µ)+ε,

for k large enough. ut

Now let E ≥ h + u1 be an affine superenvelope of the entropy structure
of (X,T ). As already noticed, E = h + u where u is a repair function for
the entropy tails on X, larger than or equal to u1. Combining the above two
lemmas, we get that then û, defined as u on MT (X) and zero on M̂ \ M,

repairs the entropy tails {ĥ − ĥk} restricted to M̂ =MT (X) ∪
⋃
nMT̂ (Sn).

Since u is affine, being upper semicontinuous, it is harmonic onMT (X). Since
MT (X) is a face ofMT̂ (X̂) (i.e. a sub-simplex spanned by a subset of extreme
points), this easily implies that u coincides with the restriction to MT (X) of
the harmonic prolongation ûhar of û onto the entire set MT̂ (X̂). Note that if

we prolong û to û0 by assigning zero to all measures inMT̂ (X̂) on which û is
still undefined, then we obtain a convex and upper semicontinuous function,
which has the same harmonic prolongation as û.18 By [Do11, Fact A.2.20 ],
ûhar = ûhar0 is upper semicontinuous. Also, ûhar coincides with û on the set M̂
which contains the closure of all ergodic measures of (X̂, T̂ ). Since û repairs

{ĥ−ĥk} on M̂ it follows from [Do11, Lemma 8.2.14] that ûhar is an affine repair

function for {ĥ − ĥk} on the entire set MT̂ (X̂). As we have already argued,

Ê = h+ ûhar represents an extension entropy function in a symbolic extension
of the enhanced system, and its restriction to MT (X) thus represents an
extension entropy function in a symbolic extension of (X,T ) with a partial
embedding. Since, as noticed earlier, ûhar|MT (X) = u, the above restriction
equals h+ u = E, which establishes the implication (2) =⇒ (1). ut

6 Final remarks and examples

In this section we state some consequences of Theorem 5.5 combined with the
general theory of symbolic extensions and we provide examples showing that
the characterization in Theorem 5.5 cannot be essentially simplified, i.e., ex-
pressed in a more direct way. For simplicity, we assume that Per∗n = Pern(X,T )
for each n (i.e., we will focus on symbolic extension with a complete embed-
ding), although analogous notions, statements and examples can be produced
for partial embedding as well. We introduce the following notions:

Definition 6.1 .

– Let hemb denote the function on MT (X) defined as the pointwise infimum
of hπ over all symbolic extensions with an embedding,

18 For the harmonic prolongation only the values at extreme points matter and the domain
of û contains all ergodic measures of (X̂, T̂ ).
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– let hemb(X,T ) be the infimum of htop(Y, S) over all symbolic extensions
with an embedding,

– let P∗(X,T ) = limk supx∈X Pk(x) = limk supµ∈MT (X) Pk(µ).

Since Pk and P̃k have the same supremum, and {P̃k} is a nonincreasing
sequence of upper semicontinuous functions we may swap the supremum and
the limit (see e.g. [BD05, Proposition 2.4]), so that we obtain

P∗(X,T ) = lim
k

sup
µ∈MT (X)

P̃k(µ) = sup
µ∈MT (X)

lim
k

P̃k(µ) = sup
µ∈MT (X)

u1(µ).

Thus our notation P∗(X,T ) stands in analogy to the notion of tail entropy19

h∗(X,T ) defined by Misiurewicz and we will call it the tail period capacity. A
corresponding variational principle for the embedding entropy also holds:

hemb(X,T ) = sup
µ∈MT (X)

hemb(µ).

The proof follows the same scheme as the proof of the “symbolic extension en-
tropy variational principle” (see [BD05] or the book [Do11]). Since we will not
use it, we refrain from providing a detailed proof (which requires introducing
a few more notions). Instead, we prove some more useful estimates:

Fact 6.2 One has the following inequalities:

max{hsex, h+ u1} ≤ hemb ≤ hsex + u1,

max{hsex(X,T ),P∗(X,T )} ≤ hemb(X,T ) ≤ hsex(X,T ) + P∗(X,T ).

Proof The left hand side inequalities follow directly from Theorem 5.5. Since
each function P̃k upper semicontinuous and concave (the upper semicontin-
uous envelope of an affine function is always concave) we can write u1 as a
pointwise infimum of upper semicontinuous affine functions G. Whenever E is
an affine superenvelope of {hk}, so are the sums E + G, and clearly they are
larger than or equal to h+ u1. Taking infimum over E and G we get the first
right hand side inequality. The second one is now trivial since the supremum
of a sum of two functions does not exceed the sum of their suprema. ut

And this is actually all that can be said in full generality. The inequalities
cannot be improved in general. We will provide examples in which the function
hemb actually equals hπ in a suitable extension and realizes the following cases:
(f � g means f ≤ g and f(x) < g(x) at some point)

– In Example 6.3:

max{hsex, h+ u1} � hemb = hsex + u1,

max{hsex(X,T ),P∗(X,T )} < hemb(X,T ) = hsex(X,T ) + P∗(X,T );

19 Tail entropy is known mainly under the confusing name of “topological conditional
entropy”. It turns out (see [Do05]) that h∗(X,T ) is equal to supuH1 , where uH1 is computed

for the tails of the entropy structure as uH1 = limk(h̃− hk).
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– In Example 6.4:

max{hsex, h+ u1} = hemb � hsex + u1,

max{hsex(X,T ),P∗(X,T )} = hemb(X,T ) < hsex(X,T ) + P∗(X,T );

– We will show that in the old Example 4.1, hemb is not equal to h plus the
minimal repair function of any tail structure combining {h− hk} and Pk,
in particular of {h − hk + Pk} or of {max{h − hk,Pk}}. In fact, in this
example we have h ≡ 0 while u1 alone is not a repair function of the tail
structure {Pk}.

All this means that the way in which the act of embedding periodic points in
a symbolic extension affects the function hsex (to become hemb) is complicated
and difficult to predict. It seems that the characterization in Theorem 5.5 is
indeed the best possible.

Example 6.3 Let Y0 be a uniquely ergodic subshift of positive entropy h0,
and denote by µ its unique invariant measure. Fix some y0 ∈ Y0. By unique
ergodicity, y0 is generic for µ. Let yp be the periodic sequence obtained by
repeating the initial block of length p of y0 (we can assume that the minimal
period of yp is p). Let Y be the smallest subshift containing Y0 and each yp. The
ergodic measures of Y are µ and a sequence of periodic measures converging to
µ. Now let X be the array system consisting of arrays x of the following form:
x has at most two nonzero rows: first of them, number m, contains an element
y of Y , the second one, present only if y is periodic with minimal period p (i.e.,
when y is in the orbit of yp), number m+ p, contains another (arbitrary, say
over {0, 1}) periodic sequence with minimal period p. The structure of ergodic
measures of X is as follows: there are “clusters” of periodic measures µm,p,i
of period p, supported by arrays with two nonzero rows, m and m + p (the
index i enumerates all periodic patterns with minimal period p). As p grows,
these measures converge (regardless of i) to measures µm supported by arrays
with only one nonzero row (number m) which contains an element of Y0. As m
grows, all measures µm,p,i and µm tend to µ0—the pointmass at the fixpoint
(the array of zeros). Note that the set of ergodic measures is closed, so in order
to study affine superenvelopes of sequences of affine functions on MT (X), it
suffices to study arbitrary superenvelopes on the set of ergodic measures (the
situation is shown on Figure 6.1).

All measures µm have entropy h0, and (h− hk)(µm) = 0 whenever k ≥ m
and h0 otherwise. This easily implies that the minimal repair function u of
{h− hk} equals zero except at µ0 where it equals h0, and hsex = h+ u equals
h0 on the measures µm, µ0 and clearly zero on each µm,p,i.

On the other hand, the functions Pk nearly equal log 2 at each µm,p,i
whenever k ≤ m+ p (nearly, because in row m+ p we must not use blocks of
length p whose repetitions have minimal period smaller than p), which easily

implies that u1 = limk P̃k equals log 2 at each measure µm, and, by upper
semicontinuity also at µ0 (and zero at other ergodic measures). In particular
P∗(X,T ) = log 2.



42 David Burguet and Tomasz Downarowicz

Fig. 6.1 The set of ergodic measures in the example.

Now let u be a repair function of {h − hk} larger than or equal to u1,
i.e., larger than or equal to log 2 on the measures µm and µ0. Then (u +
h − hk)(µm) ≥ log 2 + h0 for m > k implying, by the repair condition, that
u(µ0) ≥ log 2 + h0. Thus

hemb(µ0) = h0 + log 2 = hsex(µ0) + u1(µ0) > max{hsex(µ0), h(µ0) + u1(µ0)}.

At other ergodic measures we have hsex + u1 = max{hsex, h + u1} (we skip
the easy verification), so hemb equals both sides. Nonetheless, the topological
notions depend only on µ0 and we have

hemb(X,T ) = h0+log 2 = hsex(X,T )+P∗(X,T ) > max{hsex(X,T ),P∗(X,T )}.

Example 6.4 This example is a simplification of the preceding one. The system
X consists of arrays with only one nontrivial row, number m, which contains
either an element of Y0 or an arbitrary periodic sequence over {0, 1}, of minimal
period m. There are now ergodic measures µm of entropy h0 tending to µ0 and
clusters of periodic measures µm,i also tending (with increasing m, regardless
of i) to µ0. The entropy structure is basically the same as in the preceding
example, in particular hsex(µ0) = h0. However, this time u1 equals log 2 only
at µ0 (and zero otherwise). The function u equal to max{h0, log 2} at µ0 (and
zero at other ergodic measures) is larger than or equal to u1, and repairs the
tails of the entropy structure, thus

hemb(µ0) = max{hsex(µ0), h(µ0) + u1(µ0)} < hsex(µ0) + u1(µ0).

At other ergodic measures max{hsex, h+ u1} = hsex + u1 (because u1 = 0), so
that hemb equals both sides. Nonetheless, we have

hemb(X,T ) = max{h0, log 2} = max{hsex(X,T ),P∗(X,T )} < hsex(X,T )+P∗(X,T ).



Uniform generators 43

Example 4.1, continuation. Recall that there are measures µm,i,j,l converging
with j (and regardless of l) to measures µm,i, which in turn converge with m
(regardless of i) to µ0. In the second (more sophisticated) symbolic extension
with an embedding, hπ equals zero at each µm,i,j,l, and log 2 on each µm,i and
on µ0. It is elementary to see that the period tail structure in this example is as
follows: Pk(µm,i,j,l) = log 2 for k < j and 0 for k ≥ j. Similarly, Pm(µm,i) =
log 2 for k < m, and zero otherwise. All these functions are zero at µ0. This
period tail structure has the same form as the “pick up sticks game 3” on
page 232 in [Do11] except that single points must be replaced by clusters of
measures having common indices k and j. As explained in the book, u1 equals
0 at all measures µk,i,j,l and log 2 at all measures µk,i and µ0 (hence it matches
the above hπ), and this function does not repair the period tail structure. The
order of accumulation of this structure is 2 and the smallest repair function is
u2 which assumes the value 2 log 2 at µ0 (see figure on page 234 in [Do11]). This
function actually matches hπ in the first (more obvious) symbolic extension
with an embedding. Because in this example h = hk = 0 for all k, h + u1 is
not a repair function of neither {h − hk + Pk} nor {max{h − hk,Pk}}, nor
any other (reasonable) combination of these two tail structures.

We investigate now the optimal cardinality of a uniform generator. Recall
that it equals the optimal size of an alphabet Λ of a symbolic extension (Y, S)
with an embedding. As we have already noticed, in the aperiodic case this
cardinality equals the least integer l with log l > hsex(X,T ), that is #Λ =
b2hsex(X,T )c+ 1. In presence of periodic points we have:

Theorem 6.5 Let (X,T ) be a topological dynamical system admitting a uni-
form generator. Then the optimal cardinality of a uniform generator equals

#Λ = b2max{Psup(X,T ),hemb(X,T )}c+ 1,

which does not exceed b2max{Psup(X,T ),hsex(X,T )+P∗(X,T )}c+ 1.

Proof By Remark 3.6, it is enough to see that

hsex(X̂, T̂ ) ≤ max{Psup(X,T ), hemb(X,T )}.

Indeed if π : (Y, S)→ (X,T ) is a symbolic extension with an embedding then
the finitary symbolic extension π̂ : (Ŷ , Ŝ)→ (X̂, T̂ ) obtained in Lemma 4.5 has
entropy equal to max{supn htop(Sn), htop(Y, S)} = max{Psup(X,T ), htop(Y, S)}.
Then one concludes by Serafin’s Theorem (or Theorem 4.6). ut

Remark 6.6 When (X,T ) is asymptotically expansive, i.e., it is asymptotically
h-expansive and P∗(T ) = 0, then we may choose a uniform generator of car-
dinality

#Λ = b2max{Psup(X,T ),htop(X,T )}c+ 1.

Thus we recover the estimate obtained in [Bu16].



44 David Burguet and Tomasz Downarowicz

We will say now a few concluding words about the applications for smooth
dynamical systems. Recall that C∞ maps on compact manifolds are asymp-
totically h-expansive [Buz97], thus the entropy function h is a superenvelope
of the entropy structure. The first author proved in a recent paper [Bu16’] that
for a C∞ surface diffeomorphism f : M →M and for any δ > 0 we have

P∗(M,f) = 0,

when the subset Per∗ = Per∗δ of selected periodic points is given by hyper-
bolic saddles with Lyapunov exponents δ-away from zero. In this case we get
therefore as a consequence of Theorem 5.5:

Corollary 6.7 For any C∞ surface diffeomorphism (M,f) and for any δ > 0
there exists a symbolic extension π : (Y, S) → (M,f) with partial embedding
with respect to Per∗δ such that hπ = h.
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