MAXIMAL MEASURE AND ENTROPIC CONTINUITY OF LYAPUNOV EXPONENTS FOR \mathcal{C}^{r} SURFACE DIFFEOMORPHISMS WITH LARGE ENTROPY

DAVID BURGUET

Abstract

We prove a finite smooth version of the entropic continuity of Lyapunov exponents proved recently by Buzzi, Crovisier and Sarig for \mathcal{C}^{∞} surface diffeomorphisms [10]. As a consequence we show that any $\mathcal{C}^{r}, r>1$, smooth surface diffeomorphism f with $h_{t o p}(f)>\frac{1}{r} \lim \sup _{n} \frac{1}{n} \log ^{+}\left\|d f^{n}\right\|_{\infty}$ admits a measure of maximal entropy. We also prove the \mathcal{C}^{r} continuity of the topological entropy at f.

Introduction

The entropy of a dynamical system quantifies the dynamical complexity by counting distinct orbits. There are topological and measure theoretical versions which are related by a variational principle : the topological entropy of a continuous map on a compact space is equal to the supremum of the entropy of the invariant (probability) measures. An invariant measure is said to be of maximal entropy (or a maximal measure) when its entropy is equal to the topological entropy, i.e. this measure realizes the supremum in the variational principle. In general a topological system may not admit a measure of maximal entropy. But such a measure exists for dynamical systems satisfying some expansiveness properties. In particular Newhouse [15] has proved their existence for C^{∞} systems by using Yomdin's theory. In the present paper we show the existence of a measure of maximal entropy for $\mathcal{C}^{r}, 1<r<+\infty$, smooth surface diffeomorphisms with large entropy.

Other important dynamical quantities for smooth systems are given by the Lyapunov exponents which estimate the exponential growth of the derivative. For \mathcal{C}^{∞} surface diffeomorphisms, J. Buzzi, S. Crovisier and O. Sarig proved recently a property of continuity in the entropy of the Lyapunov exponents with many statistical applications [10]. More precisely, they showed that for a \mathcal{C}^{∞} surface diffeomorphism f, if ν_{k} is a converging sequence of ergodic measures with $\lim _{k} h\left(\nu_{k}\right)=h_{\text {top }}(f)$, then the Lyapunov exponents of ν_{k} are going to the (average) Lyapunov exponents of the limit (which is a measure of maximal entropy). We prove a \mathcal{C}^{r} version of this fact for $1<r<+\infty$.

1. Statements

We define now some notations to state our main results. For a $\mathcal{C}^{r}, r \geq 1$, diffeomorphism f on a compact Riemannian surface $(\mathbf{M},\|\cdot\|)$ we let $F: \mathbb{P} T \mathbf{M} \circlearrowleft$ be the induced map on the projective tangent bundle $\mathbb{P} T \mathbf{M}=T^{1} \mathbf{M} / \pm 1$ and we denote by $\phi, \psi: \mathbb{P} T \mathbf{M} \rightarrow \mathbb{R}$ the continuous observables on $\mathbb{P} T \mathbf{M}$ given respectively by $\phi:(x, v) \mapsto \log \left\|d_{x} f(v)\right\|$ and $\psi:(x, v) \mapsto \log \left\|d_{x} f(v)\right\|-\frac{1}{r} \log ^{+}\left\|d_{x} f\right\|$ with $\left\|d_{x} f\right\|=\sup _{v \in T_{x} \mathbf{M} \backslash\{0\}} \frac{\left\|d_{x} f(v)\right\|}{\|v\|}$. For $k \in$

[^0]\mathbb{N}^{*} we define more generally $\phi_{k}:(x, v) \mapsto \log \left\|d_{x} f^{k}(v)\right\|$ and $\psi_{k}:(x, v) \mapsto \phi_{k}(x, v)-$ $\frac{1}{r} \sum_{l=0}^{k-1} \log ^{+}\left\|d_{f^{k} x} f\right\|$. Then we let $\lambda^{+}(x)$ and $\lambda^{-}(x)$ be the pointwise Lyapunov exponents given by $\lambda^{+}(x)=\lim \sup _{n \rightarrow+\infty} \frac{1}{n} \log \left\|d_{x} f^{n}\right\|$ and $\lambda^{-}(x)=\liminf _{n \rightarrow-\infty} \frac{1}{n} \log \left\|d_{x} f^{n}\right\|$ for any $x \in \mathbf{M}$ and $\lambda^{+}(\mu)=\int \lambda^{+}(x) d \mu(x), \lambda^{-}(\mu)=\int \lambda^{-}(x) d \mu(x)$, for any f-invariant measure μ.

Also we put $\lambda^{+}(f):=\lim _{n} \frac{1}{n} \log ^{+}\left\|d f^{n}\right\|_{\infty}$ with $\left\|d f^{n}\right\|_{\infty}=\sup _{x \in \mathrm{M}}\left\|d_{x} f^{n}\right\|$. The function $f \mapsto \lambda^{+}(f)$ is upper semi-continuous in the \mathcal{C}^{1} topology on the set of \mathcal{C}^{1} diffeomorphisms on M. For an f-invariant measure μ with $\lambda^{+}(x)>0 \geq \lambda^{-}(x)$ for μ a.e. x, there are by Oseledets* theorem one-dimensional invariant vector spaces $\mathcal{E}_{+}(x)$ and $\mathcal{E}_{-}(x)$, resp. called the unstable and stable Oseledets bundle, such that

$$
\forall \mu \text { a.e. } x \forall v \in \mathcal{E}_{ \pm}(x) \backslash\{0\}, \lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|d_{x} f^{n}(v)\right\|=\lambda^{ \pm}(x) \text {. }
$$

Then we let $\hat{\mu}^{+}$be the F-invariant measure given by the lift of μ on $\mathbb{P} T \mathbf{M}$ with $\hat{\mu}^{+}\left(\mathcal{E}_{+}\right)=1$. When writing $\hat{\mu}^{+}$we assume implicitly that the push-forward measure μ on \mathbf{M} satisfies $\lambda^{+}(x)>0 \geq \lambda^{-}(x)$ for μ a.e. x.

A sequence of \mathcal{C}^{r}, with $r>1$, surface diffeomorphisms $\left(f_{k}\right)_{k}$ on \mathbf{M} is said to converge \mathcal{C}^{r} weakly to a diffeomorphism f, when f_{k} goes to f in the \mathcal{C}^{1} topology and the sequence $\left(f_{k}\right)_{k}$ is \mathcal{C}^{r} bounded. In particular f is \mathcal{C}^{r-1}.
Theorem (Buzzi-Crovisier-Sarig, Theorem C [10]). Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence of \mathcal{C}^{r}, with $r>1$, surface diffeomorphisms converging \mathcal{C}^{r} weakly to a diffeomorphism f. Let $\left(F_{k}\right)_{k \in \mathbb{N}}$ and F be the lifts of $\left(f_{k}\right)_{k \in \mathbb{N}}$ and f to $\mathbb{P T M}$. Assume there is a sequence $\left(\hat{\nu}_{k}^{+}\right)_{k}$ of ergodic F_{k}-invariant measures converging to $\hat{\mu}$.

Then there are $\beta \in[0,1]$ and F-invariant measures $\hat{\mu}_{0}$ and $\hat{\mu}_{1}^{+}$with $\hat{\mu}=(1-\beta) \hat{\mu}_{0}+\beta \hat{\mu}_{1}^{+}$, such that:

$$
\limsup _{k \rightarrow+\infty} h\left(\nu_{k}\right) \leq \beta h\left(\mu_{1}\right)+\frac{\lambda^{+}(f)+\lambda^{+}\left(f^{-1}\right)}{r-1} .
$$

In particular when $f\left(=f_{k}\right.$ for all $\left.k\right)$ is \mathcal{C}^{∞} and $h\left(\nu_{k}\right)$ goes to the topological entropy of f, then β is equal to 1 and therefore $\lambda^{+}\left(\nu_{k}\right)$ goes to $\lambda^{+}(\mu)$:

Corollary (Entropic continuity of Lyapunov exponents [10]). Let f be a \mathcal{C}^{∞} surface diffeomorphism with $h_{\text {top }}(f)>0$.

Then if $\left(\nu_{k}\right)_{k}$ is a sequence of ergodic measures converging to μ with $\lim _{k} h\left(\nu_{k}\right)=h_{\text {top }}(f)$, then

- $h(\mu)=h_{\text {top }}(f)^{\dagger}$,
- $\lim _{k} \lambda^{+}\left(\nu_{k}\right)=\lambda^{+}(\mu)$.

We state an improved version of Buzzi-Crovisier-Sarig Theorem, which allows to prove the same entropy continuity of Lyapunov exponents for $\mathcal{C}^{r}, 1<r<+\infty$, surface diffeomorphisms with large enough entropy (see Corollary 1).
Main Theorem. Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence of \mathcal{C}^{r}, with $r>1$, surface diffeomorphisms converging \mathcal{C}^{r} weakly to a diffeomorphism f. Let $\left(F_{k}\right)_{k \in \mathbb{N}}$ and F be the lifts of $\left(f_{k}\right)_{k \in \mathbb{N}}$ and f

[^1]to $\mathbb{P} T \mathrm{M}$. Assume there is a sequence $\left(\hat{\nu}_{k}^{+}\right)_{k}$ of ergodic F_{k}-invariant measures converging to $\hat{\mu}$.
Then for any $\alpha>\frac{\lambda^{+}(f)}{r}$, there are $\beta=\beta_{\alpha} \in[0,1]$ and F-invariant measures $\hat{\mu}_{0}=\hat{\mu}_{0, \alpha}$ and $\hat{\mu}_{1}^{+}=\hat{\mu}_{1, \alpha}^{+}$with $\hat{\mu}=(1-\beta) \hat{\mu}_{0}+\beta \hat{\mu}_{1}^{+}$, such that:
$$
\limsup _{k \rightarrow+\infty} h\left(\nu_{k}\right) \leq \beta h\left(\mu_{1}\right)+(1-\beta) \alpha .
$$

The Main Theorem implies Buzzi-Crovisier-Sarig statement. Indeed, either $\lim _{k} \lambda^{+}\left(\nu_{k}\right)=$ $\int \phi d \hat{\mu} \leq \frac{\lambda^{+}(f)}{r}$ and we get by Ruelle inequality, $\lim \sup _{k} h\left(\nu_{k}\right) \leq \frac{\lambda^{+}(f)}{r}$ or there exists $\alpha \in$ $] \frac{\lambda^{+}(f)}{r}, \min \left(\int \phi d \hat{\mu}, \frac{\lambda^{+}(f)}{r-1}\right)[$. By applying our Main Theorem with respect to α, there is a decomposition $\hat{\mu}=\left(1-\beta_{\alpha}\right) \hat{\mu}_{0, \alpha}+\beta_{\alpha} \hat{\mu}_{1, \alpha}^{+}$satisfying limsup $\operatorname{sum}_{k \rightarrow+\infty} h\left(\nu_{k}\right) \leq \beta_{\alpha} h\left(\mu_{1, \alpha}\right)+\left(1-\beta_{\alpha}\right) \alpha$. But it follows from the proofs that $\beta_{\alpha} \mu_{1, \alpha}$ is a component of $\beta \mu_{1}$ with β and μ_{1} being as in Buzzi-Crovisier-Sarig's statement (see Remark 6). In particular $\beta_{\alpha} h\left(\mu_{1, \alpha}\right) \leq \beta h\left(\mu_{1}\right)$, therefore $\lim \sup _{k \rightarrow+\infty} h\left(\nu_{k}\right) \leq \beta h\left(\mu_{1}\right)+\frac{\lambda^{+}(f)+\lambda^{+}\left(f^{-1}\right)}{r-1}$. In Theorem C [10], the authors also proved $\int \phi d \hat{\mu}_{0}=0$ whenever $\beta \neq 1$. Therefore we get here $\left(1-\beta_{\alpha}\right) \int \phi d \hat{\mu}_{0, \alpha} \geq(1-\beta) \int \phi d \hat{\mu}_{0}=0$, then $\int \phi d \hat{\mu}_{0, \alpha} \geq 0$. But maybe we could have $\int \phi d \hat{\mu}_{0, \alpha}>0$.
Corollary 1 (Existence of maximal measures and entropic continuity of Lyapunov exponents). Let f be a \mathcal{C}^{r}, with $r>1$, surface diffeomorphism satisfying $h_{\text {top }}(f)>\frac{\lambda^{+}(f)}{r}$.

Then f admits a measure of maximal entropy. More precisely, if $\left(\nu_{k}\right)_{k}$ is a sequence of ergodic measures converging to μ with $\lim _{k} h\left(\nu_{k}\right)=h_{\text {top }}(f)$, then

- $h(\mu)=h_{\text {top }}(f)$,
- $\lim _{k} \lambda^{+}\left(\nu_{k}\right)=\lambda^{+}(\mu)$.

It was proved in [9] that any \mathcal{C}^{r} surface diffeomorphism satisfying $h_{\text {top }}(f)>\frac{\lambda^{+}(f)}{r}$ admits at most finitely many ergodic measures of maximal entropy. On the other hand, J. Buzzi has built examples of \mathcal{C}^{r} surface diffeomorphisms for any $+\infty>r>1$ with $\frac{h_{\text {top }}(f)}{\lambda^{+}(f)}$ arbitrarily close to $1 / r$ without a measure of maximal entropy [7]. Such results were already known for interval maps $[3,6,8]$.
Proof. We consider the constant sequence of diffeomorphisms equal to f. By taking a subsequence, we can assume that $\left(\hat{\nu}_{k}^{+}\right)_{k}$ is converging to a lift $\hat{\mu}$ of μ. By using the notations of the Main Theorem with $h_{\text {top }}(f)>\alpha>\frac{\lambda^{+}(f)}{r}$, we have

$$
\begin{aligned}
h_{\text {top }}(f) & =\lim _{k \rightarrow+\infty} h\left(\nu_{k}\right), \\
& \leq \beta h\left(\mu_{1}\right)+(1-\beta) \alpha, \\
& \leq \beta h_{\text {top }}(f)+(1-\beta) \alpha, \\
(1-\beta) h_{\text {top }}(f) & \leq(1-\beta) \alpha .
\end{aligned}
$$

But $h_{\text {top }}(f)>\alpha$, therefore $\beta=1$, i.e. $\hat{\mu}_{1}^{+}=\hat{\mu}$ and $\lim _{k} \lambda^{+}\left(\nu_{k}\right)=\lambda^{+}(\mu)$. Moreover $h_{\text {top }}(f)=$ $\lim _{k \rightarrow+\infty} h\left(\nu_{k}\right) \leq \beta h\left(\mu_{1}\right)+(1-\beta) \alpha=h(\mu)$. Consequently μ is a measure of maximal entropy of f.

Corollary 2 (Continuity of topological entropy and maximal measures). Let $\left(f_{k}\right)_{k}$ be a sequence of \mathcal{C}^{r}, with $r>1$, surface diffeomorphisms converging \mathcal{C}^{r} weakly to a diffeomorphism
f with $h_{\text {top }}(f) \geq \frac{\lambda^{+}(f)}{r}$.
Then

$$
h_{\text {top }}(f)=\lim _{k} h_{\text {top }}\left(f_{k}\right) .
$$

Moreover if $h_{\text {top }}(f)>\frac{\lambda^{+}(f)}{r}$ and ν_{k} is a maximal measure of f_{k} for large k, then any limit measure of $\left(\nu_{k}\right)_{k}$ for the weak-* topology is a maximal measure of f.

Proof. By Katok's horseshoes theorem [14], the topological entropy is lower semi-continuous for the \mathcal{C}^{1} topology on the set of \mathcal{C}^{r} surface diffeomorphisms. Therefore it is enough to show the upper semi-continuity.

By the variational principle there is a sequence of probability measures $\left(\nu_{k}\right)_{k \in K}, K \subset \mathbb{N}$ with $\sharp K=\infty$, such that :

- ν_{k} is an ergodic f_{k}-invariant measure for each k,
- $\lim _{k \in K} h\left(\nu_{k}\right)=\lim \sup _{k \in \mathbb{N}} h_{t o p}\left(f_{k}\right)$.

By extracting a subsequence we can assume $\left(\hat{\nu}_{k}^{+}\right)_{k}$ is converging to a F-invariant measure $\hat{\mu}$ in the weak-* topology. We can then apply the Main Theorem for any $\alpha>\frac{\lambda^{+}(f)}{r}$ to get for some f-invariant measures μ_{1}, μ_{0} and $\beta \in[0,1]$ (depending on α) with $\mu=(1-\beta) \mu_{0}+\beta \mu_{1}$:

$$
\begin{align*}
\limsup _{k} h_{\text {top }}\left(f_{k}\right) & =\lim _{k} h\left(\nu_{k}\right) \\
& \leq \beta h\left(\mu_{1}\right)+(1-\beta) \alpha, \tag{1.1}\\
& \leq \beta h_{\text {top }}(f)+(1-\beta) \alpha, \\
& \leq \max \left(h_{\text {top }}(f), \alpha\right) .
\end{align*}
$$

By letting α go to $\frac{\lambda^{+}(f)}{r}$ we get

$$
\limsup _{k} h_{\text {top }}\left(f_{k}\right) \leq h_{\text {top }}(f) .
$$

If $h_{\text {top }}(f)>\frac{\lambda^{+}(f)}{r}$, we can fix $\left.\alpha \in\right] \frac{\lambda^{+}(f)}{r}$, $h_{\text {top }}(f)[$ and the inequalities (1.1) may be then rewritten as follows :

$$
\begin{aligned}
\limsup _{k} h_{\text {top }}\left(f_{k}\right) & \leq \beta h\left(\mu_{1}\right)+(1-\beta) \alpha, \\
& \leq h_{\text {top }}(f) .
\end{aligned}
$$

By the lower semi-continuity of the topological entropy, we have $h_{\text {top }}(f) \leq \lim \sup _{k} h_{\text {top }}\left(f_{k}\right)$ and therefore these inequalities are equalities, which implies $\beta=1$, then $\mu_{1}=\mu$, and $h(\mu)=$ $h_{\text {top }}(f)$.

The corresponding result was proved for interval maps in [5] by using a different method. We also refer to [5] for counterexamples of the upper semi-continuity property for interval maps f with $h_{\text {top }}(f)<\frac{\lambda^{+}(f)}{r}$. Finally, in [7], the author built, for any $r>1$, a \mathcal{C}^{r} surface diffeomorphism f with $\lim \sup _{g \xrightarrow{c^{r}}} h_{\text {top }}(g)=\frac{\lambda^{+}(f)}{r}>h_{\text {top }}(f)=0$. We recall also that upper semi-continuity of the topological entropy in the \mathcal{C}^{∞} topology was established in any dimension by Y. Yomdin in [18].

Newhouse proved that for a \mathcal{C}^{∞} system (\mathbf{M}, f), the entropy function $h: \mathcal{M}(\mathbf{M}, f) \rightarrow \mathbb{R}^{+}$ is an upper semi-continuous function on the set $\mathcal{M}(\mathbf{M}, f)$ of f-invariant probability measure.

It follows from our Main Thereom, that the entropy function is upper semi-continuous at ergodic measures with entropy larger than $\frac{\lambda^{+}(f)}{r}$ for a $\mathcal{C}^{r}, r>1$, surface diffeomorphism f.

Corollary 3 (Upper semi-continuity of the entropy function at ergodic measures with large entropy). Let $f: \mathbf{M} \circlearrowleft$ be a $\mathcal{C}^{r}, r>1$, surface diffeomorphism.

Then for any ergodic measure μ with $h(\mu) \geq \frac{\lambda^{+}(f)}{r}$, we have

$$
\limsup _{\nu \rightarrow \mu} h(\nu) \leq h(\mu)
$$

Proof. By continuity of the ergodic decomposition at ergodic measures and by harmonicity of the entropy function, we have for any ergodic measure μ (see e.g. Lemma 8.2.13 in [12]):

$$
\limsup _{\nu \text { ergodic }, \nu \rightarrow \mu} h(\nu)=\limsup _{\nu \rightarrow \mu} h(\mu)
$$

Let $\left(\nu_{k}\right)_{k \in \mathbb{N}}$ be a sequence of ergodic f-invariant measures with $\lim _{k} h\left(\nu_{k}\right)=\lim \sup _{\nu \rightarrow \mu} h(\nu)$. By extracting a subsequence we can assume that the sequence $\left(\hat{\nu}_{k}^{+}\right)_{k}$ is converging to some lift $\hat{\mu}$ of μ. Take α with $\alpha>\frac{\lambda^{+}(f)}{r}$. Then, in the decomposition $\hat{\mu}=(1-\beta) \hat{\mu}_{0}+\beta \hat{\mu}_{1}^{+}$given by the Main Theorem, we have $\mu_{1}=\mu_{0}$ by ergodicity of μ. Therefore

$$
\begin{aligned}
\lim _{k} h\left(\nu_{k}\right) & \leq \beta h(\mu)+(1-\beta) \alpha \\
& \leq \max (h(\mu), \alpha)
\end{aligned}
$$

By letting α go to $\frac{\lambda^{+}(f)}{r}$ we get

$$
\lim _{k} h\left(\nu_{k}\right) \leq h(\mu)
$$

2. Main steps of the proof

We follow the strategy of the proof of [10]. We point out below the main differences:

- Geometric and neutral empirical component. For $\lambda^{+}\left(\nu_{k}\right)>\frac{\lambda^{+}(f)}{r}$ we split the orbit of a ν_{k}-typical point x into two parts. We consider the empirical measures from x at times lying between to M-close consecutive times where the unstable manifold has a "bounded geometry". We take their limit in k, then in M. In this way we get an invariant component of $\hat{\mu}$. In [10] the authors consider rather such empirical measures for α-hyperbolic times and then take the limit when α go to zero.
- Entropy computations. To compute the asymptotic entropy of the ν_{k} 's, we use the static entropy w.r.t. partitions and its conditional version. Instead the authors in [10] used Katok's like formulas.
- \mathcal{C}^{r} Reparametrizations. Finally we use here reparametrization methods from [4] and [2] respectively rather than Yomdin's reparametrizations of the projective action F as done in [10]. This is the principal difference with [10].
2.1. Empirical measures. Let (X, T) be a topological system. For a fixed Borel measurable subset G of X we let $E(x)=E_{G}(x)$ be the set of times of visits in G from x :

$$
E(x)=\left\{n \in \mathbb{Z}, T^{n} x \in G\right\} .
$$

When $a<b$ are two consecutive times in $E(x)$, then $[a, b[$ is called a neutral block (by following the terminology of [9]). For all M we let then

$$
E^{M}(x)=\bigcup_{a<b \in E(x),|a-b| \leq M}[a, b[.
$$

The complement of $E^{M}(x)$ is made of disjoint neutral blocks of length larger than M. We consider the associated empirical measures :

$$
\forall n, \mu_{x, n}^{M}=\frac{1}{n} \sum_{k \in E^{M}(x) \cap[0, n[} \delta_{T^{k} x} .
$$

Let ν be an ergodic measure. We denote by χ^{M} the indicator function of $\left\{x, 0 \in E^{M}(x)\right\}$. By the Birkhoff ergodic theorem, there is a set G of full ν-measure such that the empirical measures $\left(\mu_{x, n}^{M}\right)_{n}$ are converging for any $x \in \mathrm{G}$ and any $M \in \mathbb{N}^{*}$ to $\xi^{M}:=\chi^{M} \nu$ in the weak-* topology. We also let $\eta^{M}=\nu-\xi^{M}$. Moreover we put $\beta_{M}=\int \chi^{M} d \nu$, then $\xi^{M}=\beta_{M} \cdot \xi^{M}$ when $\beta_{M} \neq 0$ and $\eta^{M}=\left(1-\beta_{M}\right) \cdot \underline{\eta}^{M}$ when $\beta_{M} \neq 1$ with $\underline{\xi}^{M}, \underline{\eta}^{M}$ being thus probability measures. Following partially [10], the measures ξ^{M} and η^{M} are respectively called here the geometric and neutral components of ν. In general these measures are not T-invariant. From the definition one easily checks that $\xi^{M} \geq \xi^{N}$ for $M \geq N$.
2.2. Pesin unstable manifolds. We consider a smooth compact riemannian manifold ($\mathbf{M}, \|$. $\|)$. Let $\exp _{x}$ be the exponential map at x and let $R_{i n j}$ be the radius of injectivity of ($\mathbf{M},\|\cdot\|$). We consider the distance d on \mathbf{M} induced by the Riemannian structure. Let $f: \mathbf{M} \circlearrowleft$ be a $\mathcal{C}^{r}, r>1$, surface diffeomorphism. We denote by \mathcal{R} the set of Lyapunov regular points with $\lambda^{+}(x)>0>\lambda^{-}(x)$. For $x \in \mathbf{M}$ we let $W^{u}(x)$ denote the unstable manifold at x :

$$
W^{u}(x):=\left\{y \in \mathbf{M}, \lim _{n} \frac{1}{n} \log \mathrm{~d}\left(f^{n} x, f^{n} y\right)<0\right\} .
$$

By Pesin unstable manifold theorem, the set $W^{u}(x)$ for $x \in \mathcal{R}$ is a \mathcal{C}^{r} submanifold tangent to $\mathcal{E}_{+}(x)$ at x.

For $x \in \mathcal{R}$, we let \hat{x} be the vector in $\mathbb{P} T M$ associated to the unstable Oseledets bundle $\mathcal{E}_{+}(x)$. For $\delta>0$ the point x is said δ-hyperbolic with respect to ϕ (resp. ψ) when we have $\phi_{l}\left(F^{-l} \hat{x}\right) \geq \delta l$ (resp. $\psi_{l}\left(F^{-l} \hat{x}\right) \geq \delta l$) for all $l>0$. Note that if x is δ-hyperbolic with respect to ψ then it is δ-hyperbolic with respect to ϕ.

Let ν be an ergodic measure with $\lambda^{+}(\nu)-\frac{\log ^{+}\|d f\|_{\infty}}{r}>\delta>0>\lambda^{-}(\nu)$. By applying the Ergodic Maximal Inequality (see e.g. Theorem 1.1 in [1]) to the measure preserving system $\left(F^{-1}, \hat{\nu}^{+}\right)$with the observable $\psi^{\delta}=\delta-\psi \circ F^{-1}$, we get with $A_{\delta}=\{\hat{x} \in \mathbb{P} T \mathbf{M}, \exists k \geq$ 0 s.t. $\left.\sum_{l=0}^{k} \psi^{\delta}\left(F^{-l} \hat{x}\right)>0\right\}$:

$$
\int_{A_{\delta}} \psi^{\delta} d \hat{\nu}^{+} \geq 0
$$

But the set $H_{\delta}:=\left\{\hat{x} \in \mathbb{P} T \mathbf{M}, \forall l>0 \psi_{l}\left(F^{-l} \hat{x}\right) \geq \delta l\right\}$ of δ-hyperbolic points w.r.t. ψ is just the complement set $\mathbb{P} T \mathbf{M} \backslash A_{\delta}$ of A_{δ}. Therefore $\int_{H_{\delta}}\left(\delta-\psi \circ F^{-1}\right) d \hat{\nu}^{+} \leq \int\left(\delta-\psi \circ F^{-1}\right) d \hat{\nu}^{+}=$ $\delta-\lambda^{+}(\nu)+\frac{1}{r} \int \frac{\log ^{+}\|d f\|}{r} d \nu<0$. In particular we have $\hat{\nu}^{+}\left(H_{\delta}\right)>0$.

A point $x \in \mathcal{R}$ is said to have κ-bounded geometry for $\kappa>0$ when $\exp _{x}^{-1} W^{u}(x)$ contains the graph of an κ-admissible map at x, which is defined as a 1-Lipschitz map $f: I \rightarrow$ $\mathcal{E}_{+}(x)^{\perp} \subset T_{x} \mathbf{M}$, with I being an interval of $\mathcal{E}_{+}(x)$ containing 0 with length κ. We let G_{κ} be the subset of points in \mathcal{R} with κ-bounded geometry.

Lemma 1. The set G_{κ} is Borel measurable.
Proof. For $x \in \mathcal{R}$ we have $W^{u}(x)=\bigcup_{n \in \mathbb{N}} f^{n} W_{l o c}^{u}\left(f^{-n} x\right)$ with $W_{l o c}^{u}$ being the Pesin unstable local manifold at x. The sequence $\left(f^{-n} W_{\text {loc }}^{u}\left(f^{n} x\right)\right)_{n}$ is increasing in n for the inclusion. Therefore, if we let G_{κ}^{n} be the subset of points x in G_{κ}, such that $\exp _{x}^{-1} f^{n} W_{l o c}^{u}\left(f^{-n} x\right)$ contains the graph of a κ-admissible map, then we have

$$
G_{\kappa}=\bigcup_{n} G_{\kappa}^{n} .
$$

There are closed subsets, $\left(\mathcal{R}_{l}\right)_{l \in \mathbb{N}}$, called the Pesin blocks, such that $\mathcal{R}=\bigcup_{l} \mathcal{R}_{l}$ and $x \mapsto$ $W_{\text {loc }}^{u}(x)$ is continuous on \mathcal{R}_{l} for each l (see e.g. [16]). Let $\left(x_{p}\right)_{p}$ be sequence in $G_{\kappa}^{n} \cap \mathcal{R}_{l}$ which converges to $x \in \mathcal{R}_{l}$. By extracting a subsequence we can assume that the associated sequence of κ-admissible maps f_{p} at x_{p} is converging pointwisely to a κ-admissible map at x, when p goes to infinity. In particular $G_{\kappa}^{n} \cap \mathcal{R}_{l}$ is a closed set and therefore $G_{\kappa}=\bigcup_{l, n}\left(G_{\kappa}^{n} \cap \mathcal{R}_{l}\right)$ is Borel measurable.
2.3. Entropy of conditional measures. We consider an ergodic hyperbolic measure ν, i.e an ergodic measure with $\nu(\mathcal{R})=1$. A measurable partition ς is subordinated to the Pesin unstable local lamination $W_{l o c}^{u}$ of ν if the atom $\varsigma(x)$ of ς containing x is a neighborhood of x inside the curve $W_{\text {loc }}^{u}(x)$ and $f^{-1} \varsigma \succ \varsigma$. By Rokhlin's disintegration theorem, there are a measurable set Z of full ν-measure and probability measures ν_{x} on $\varsigma(x)$ for $x \in \mathrm{Z}$, called the conditional measures on unstable manifolds, satisfying $\nu=\int \nu_{x} d \nu(x)$. Moreover $\nu_{y}=\nu_{x}$ for $x, y \in \mathrm{Z}$ in the same atom of ς. Ledrappier and Young [13] proved the existence of such subordinated measurable partitions and showed that for ν-a.e. x, we have with $B_{n}(x, \rho)$ being the Bowen ball $B_{n}(x, \rho):=\bigcap_{0 \leq k<n} f^{-k} B\left(f^{k} x, \rho\right)$ (where $B\left(f^{k} x, \rho\right)$ denotes the ball for d at $f^{k} x$ with radius ρ):

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \liminf _{n}-\frac{1}{n} \log \nu_{x}\left(B_{n}(x, \rho)\right)=h(\nu) . \tag{2.1}
\end{equation*}
$$

Fix an error term $\iota>0$ depending ‡ on ν. There is $\rho>0$ and a measurable set $\mathrm{F} \subset \mathrm{Z} \cap \mathcal{R}$ with $\nu(\mathrm{F})>0$ such that

$$
\forall x \in \mathrm{~F}, \liminf _{n}-\frac{1}{n} \log \nu_{x}\left(B_{n}(x, \rho)\right) \geq h(\nu)-\iota .
$$

We fix $x_{*} \in \mathrm{~F}$ with $\nu_{x_{*}}(\mathrm{~F})>0$ and we let $\zeta=\frac{\nu_{x_{*}}(\cdot)}{\nu_{x_{*}}(\mathrm{~F})}$ be the probability measure induced by $\nu_{x_{*}}$ on F. Observe that $\nu_{x}=\nu_{x_{*}}$ for ζ a.e. x. We let D be the \mathcal{C}^{r} curve given by the Pesin local unstable manifold $W_{l o c}^{u}\left(x_{*}\right)$ at x_{*}. For a finite measurable partition P and a Borel probability measure μ we let $H_{\mu}(P)$ be the static entropy, $H_{\mu}(P)=-\sum_{A \in P} \mu(A) \log \mu(A)$. Moreover we let $P^{n}=\bigvee_{k=0}^{n-1} f^{-k} P$ be the n-iterated partition, $n \in \mathbb{N}$. We also denote by P_{x}^{n} the atom of P^{n} containing the point $x \in \mathbf{M}$.

[^2]Lemma 2. For any (finite measurable) partition P with diameter less than ρ, we have

$$
\liminf _{n} \frac{1}{n} H_{\zeta}\left(P^{n}\right) \geq h(\nu)-\iota
$$

Proof.

$$
\begin{aligned}
\underset{n}{\liminf } \frac{1}{n} H_{\zeta}\left(P^{n}\right) & =\underset{n}{\liminf } \int-\frac{1}{n} \log \zeta\left(P_{x}^{n}\right) d \zeta(x), \text { by the definition of } H_{\zeta}, \\
& \geq \int \liminf _{n}-\frac{1}{n} \log \zeta\left(P_{x}^{n}\right) d \zeta(x), \text { by Fatou's Lemma, } \\
& \geq \int \liminf _{n} \inf -\frac{1}{n} \log \nu_{x_{*}}\left(P_{x}^{n}\right) d \zeta(x), \text { by the definition of } \zeta, \\
& \geq \int \liminf _{n}-\frac{1}{n} \log \nu_{x}\left(P_{x}^{n}\right) d \zeta(x), \text { as } \nu_{x}=\nu_{x_{*}} \text { for } \zeta \text { a.e. } x, \\
& \geq \int \liminf _{n}-\frac{1}{n} \log \nu_{x}\left(B_{n}(x, \rho)\right) d \zeta(x), \text { as } \operatorname{diam}(P)<\rho \\
& \geq h(\nu)-\iota, \text { by the choice of } \mathrm{F} .
\end{aligned}
$$

2.4. Entropy splitting of the neutral and the geometric component. The natural projection from $\mathbb{P} T \mathbf{M}$ to \mathbf{M} is denoted by π. We consider a distance $\hat{\mathrm{d}}$ on the projective tangent bundle $\mathbb{P} T M$, such that $\hat{\mathrm{d}}(\hat{x}, \hat{y}) \geq \mathrm{d}(\pi \hat{x}, \pi \hat{y})$ for all $\hat{x}, \hat{y} \in \mathbb{P} T \mathbf{M}$. In this section we split the entropy contribution of the neutral and geometric components $\hat{\eta}^{M}$ and $\hat{\xi}^{M}$ of the ergodic F-invariant measure $\hat{\nu}^{+}$associated to $G=H_{\delta} \cap \pi^{-1} G_{\kappa} \subset \mathbb{P} T \mathbf{M}$, where the parameters δ and κ will be fixed later on. We also consider their projections η^{M} and ξ^{M} on M. Let \mathbf{F} and P as in the previous subsection. Without loss of generality we can assume

- $\{\hat{x}, x \in \mathrm{~F}\} \subset \mathrm{G}$ with G being the set of full $\hat{\nu}^{+}$-measure of points \hat{x} such that the empirical measures $\mu_{\hat{x}, n}^{M}$ are converging to $\hat{\xi}^{M}$ for any M (see Subsection 2.1),
- the boundary of P has zero ν-measure,
- for any $M \in \mathbb{N}$ and for any continuous function $\varphi: \mathbb{P} T \mathbf{M} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\frac{1}{n} \sum_{k \in E^{M}(x) \cap[1, n[} \varphi\left(F^{k} \hat{x}\right) \xrightarrow{n} \int \varphi d \hat{\xi}^{M} \text { uniformly in } x \in \mathrm{~F} . \tag{2.2}
\end{equation*}
$$

- for any continuous function $\vartheta: \mathbf{M} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\frac{1}{n} \sum_{k \in[1, n[} \vartheta\left(f^{k} x\right) \xrightarrow{n} \int \vartheta d \nu \text { uniformly in } x \in \mathrm{~F} \tag{2.3}
\end{equation*}
$$

Let us detail the proof of the third item. If $\mathcal{F}=\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ is a dense countable family in the set $\mathcal{C}^{0}(\mathbb{P} T \mathbf{M}, \mathbb{R})$ of real continuous functions on $\mathbb{P} T \mathbf{M}$ endowed with the supremum norm $\|\cdot\|_{\infty}$, then for all k, M, by Egorov's theorem applied to the pointwise converging sequence (f_{n} : $\mathrm{F} \rightarrow \mathbb{R})_{n}=\left(x \mapsto \int \varphi_{k} d \mu_{\hat{x}, n}^{M}\right)_{n}$, there is a subset F_{k}^{M} of F with $\nu\left(\mathrm{F}_{k}^{M}\right)>\nu(\mathrm{F})\left(1-\frac{1}{2^{k+M+3}}\right)$ such that $\int \varphi_{k} d \mu_{\hat{x}, n}^{M}$ converges to $\int \varphi_{k} d \xi^{M}$ uniformly in $x \in \mathrm{~F}_{k}^{M}$. Let $\mathrm{F}^{\prime}=\bigcap_{k, M} \mathrm{~F}_{k}^{M}$. We have $\nu\left(\mathrm{F}^{\prime}\right) \geq \frac{\nu(\mathrm{F})}{2}$. Then, if $\varphi \in \mathcal{C}^{0}(\mathbb{P} T \mathbf{M}, \mathbb{R})$, we may find for any $\epsilon>0$ a function $\varphi_{k} \in \mathcal{F}$
with $\left\|\varphi-\varphi_{k}\right\|_{\infty}<\epsilon$. Let $M \in \mathbb{N}$. Take $N=N_{\epsilon}^{k, M}$ such that $\left|\int \varphi_{k} d \mu_{\hat{x}, n}^{M}-\int \varphi_{k} d \xi^{M}\right|<\epsilon$ for $n>N$ and for all $x \in \mathrm{~F}_{k}^{M}$. In particular for all $x \in \mathrm{~F}^{\prime}$ we have for $n>N$

$$
\begin{aligned}
\left|\int \varphi d \mu_{\hat{x}, n}^{M}-\int \varphi d \xi^{M}\right| \leq & \left|\int \varphi_{k} d \mu_{\hat{x}, n}^{M}-\int \varphi d \mu_{\hat{x}, n}^{M}\right|+\left|\int \varphi_{k} d \mu_{\hat{x}, n}^{M}-\int \varphi_{k} d \xi^{M}\right| \\
& +\left|\int \varphi_{k} d \xi^{M}-\int \varphi d \xi^{M}\right| \\
& \leq 2\left\|\varphi-\varphi_{k}\right\|_{\infty}+\left|\int \varphi_{k} d \mu_{\hat{x}, n}^{M}-\int \varphi_{k} d \xi^{M}\right| \\
& <3 \epsilon
\end{aligned}
$$

This proves (2.2) by taking F^{\prime} in the place of F . One proves similarly (2.3).

Fix now M. For each $n \in \mathbb{N}$ and $x \in \mathrm{~F}$ we let $E_{n}(x)=E(\hat{x}) \cap\left[0, n\left[\right.\right.$ and $E_{n}^{M}(x)=$ $E^{M}(\hat{x}) \cap\left[0, n\left[\right.\right.$. We also let E_{n}^{M} be the partition of F with atoms $A_{E}:=\left\{x \in D, E_{n}^{M}(x)=E\right\}$ for $E \subset\left[0, n\left[\right.\right.$. Given a partition Q of $\mathbb{P} T \mathbf{M}$, we also let $Q^{\mathrm{E}_{n}^{M}}$ be the partition of $\hat{\mathrm{F}}:=$ $\{\hat{x}, x \in \mathrm{~F} \cap D\}$ finer than $\pi^{-1} \mathrm{E}_{n}^{M}$ with atoms $\left\{\hat{x} \in \hat{\mathrm{~F}}, E_{n}^{M}(x)=E\right.$ and $\left.\forall k \in E, F^{k} \hat{x} \in Q_{k}\right\}$ for $E \subset\left[0, n\left[\right.\right.$ and $\left(Q_{k}\right)_{k \in E} \in Q^{E}$. We let ∂Q be the boundary of the partition Q, which is the union of the boundaries of its atoms. For a measure η and a subset A of \mathbf{M} with $\eta(A)>0$ we denote by $\eta_{A}=\frac{\eta(A \cap \cdot)}{\eta(A)}$ the induced probability measure on A. Moreover, for two sets A, B we let $A \Delta B$ denote the symmetric difference of A and B, i.e. $A \Delta B=(A \backslash B) \cup(B \backslash A)$. Finally, let $H:] 0,1\left[\rightarrow \mathbb{R}^{+}\right.$be the map $t \mapsto-t \log t-(1-t) \log (1-t)$. Recall that $\hat{\zeta}^{+}$is the lift of ζ on $\mathbb{P T M}$ to the unstable Oseledets bundle (with ζ as in Subsection 2.3).

Lemma 3. For any finite partition Q and any $m \in \mathbb{N}^{*}$ with $\hat{\xi}^{M}\left(\partial Q^{m}\right)=0$ we have

$$
\begin{equation*}
h(\nu) \leq \beta_{M} \frac{1}{m} H_{\hat{\xi}^{M}}\left(Q^{m}\right)+\lim \sup _{n} \frac{1}{n} H_{\hat{\zeta}^{+}}\left(\pi^{-1} P^{n} \mid Q^{\mathrm{E}_{n}^{M}}\right)+H(2 / M)+\frac{12 \log \sharp Q}{M}+\iota \tag{2.4}
\end{equation*}
$$

Before the proof of Lemma 3, we first recall a technical lemma from [2].
Lemma 4 (Lemma 6 in [2]). Let (X, T) be a topological system. Let μ be a Borel probability measure on X and let E be a finite subset of \mathbb{N}. For any finite partition Q of X, we have with $\mu^{E}:=\frac{1}{\sharp E} \sum_{k \in E} T_{*}^{k} \mu$ and $Q^{E}:=\bigvee_{k \in E} T^{-k} Q$:

$$
\frac{1}{\sharp E} H_{\mu}\left(Q^{E}\right) \leq \frac{1}{m} H_{\mu_{E}}\left(Q^{m}\right)+6 m \frac{\sharp(E+1) \Delta E}{\sharp E} \log \sharp Q .
$$

Proof of Lemma 3. As the complement of $E_{n}^{M}(x)$ is the disjoint union of neutral blocks with length larger than M, there are at most $A_{n}^{M}=\sum_{k=0}^{[2 n / M]+1}\binom{n}{k}$ possible values for $E_{n}^{M}(x)$ so that

$$
\begin{aligned}
\frac{1}{n} H_{\zeta}\left(P^{n}\right) & =\frac{1}{n} H_{\zeta}\left(P^{n} \mid \mathrm{E}_{n}^{M}\right)+H_{\zeta}\left(\mathrm{E}_{n}^{M}\right) \\
& \leq \frac{1}{n} H_{\zeta}\left(P^{n} \mid \mathrm{E}_{n}^{M}\right)+\log A_{n}^{M} \\
\liminf _{n} \frac{1}{n} H_{\zeta}\left(P^{n}\right) & \leq \limsup _{n} \frac{1}{n} H_{\zeta}\left(P^{n} \mid \mathrm{E}_{n}^{M}\right)+H(2 / M) \text { by using Stirling's formula. }
\end{aligned}
$$

Moreover

$$
\begin{aligned}
\frac{1}{n} H_{\zeta}\left(P^{n} \mid \mathrm{E}_{n}^{M}\right) & =\frac{1}{n} H_{\hat{\zeta}^{+}}\left(\pi^{-1} P^{n} \mid \pi^{-1} \mathrm{E}_{n}^{M}\right) \\
& \leq \frac{1}{n} H_{\hat{\zeta}^{+}}\left(Q^{\mathrm{E}_{n}^{M}} \mid \pi^{-1} \mathrm{E}_{n}^{M}\right)+\frac{1}{n} H_{\hat{\zeta}^{+}}\left(\pi^{-1} P^{n} \mid Q^{\mathrm{E}_{n}^{M}}\right)
\end{aligned}
$$

For $E \subset\left[0, n\left[\right.\right.$ we let $\hat{\zeta}_{E, n}^{+}=\frac{n}{\sharp E} \int \mu_{\hat{x}, n}^{M} d \zeta_{A_{E}}(x)$, which may be also written as $\left(\hat{\zeta}_{\pi^{-1} A_{E}}^{+}\right)^{E}$ by using the notations of Lemma 4. By Lemma 4 applied to the system ($\mathbb{P} T \mathbf{M}, F$) and the measures $\mu:=\hat{\zeta}_{\pi^{-1} A_{E}}^{+}$for $A_{E} \in \mathrm{E}_{n}^{M}$ we have for all $n>m \in \mathbb{N}^{*}$:

$$
\begin{aligned}
H_{\hat{\zeta}^{+}}\left(Q^{\mathrm{E}_{n}^{M}} \mid \pi^{-1} \mathrm{E}_{n}^{M}\right) & =\sum_{E} \zeta\left(A_{E}\right) H_{\hat{\zeta}_{\pi^{-1} A_{E}}^{+}}\left(Q^{E}\right), \\
& \leq \sum_{E} \zeta\left(A_{E}\right) \sharp E\left(\frac{1}{m} H_{\hat{\zeta}_{E, n}^{+}}\left(Q^{m}\right)+6 m \frac{\sharp(E+1) \Delta E}{\sharp E} \log \sharp Q\right) .
\end{aligned}
$$

Recall again that if $E=E_{n}^{M}(x)$ for some x then the complement set of E in $[1, n[$ is made of neutral blocks of length larger than M, therefore $\sharp(E+1) \Delta E \leq \frac{2 M}{n}$. Moreover it follows from $\xi^{M}\left(\partial Q^{m}\right)=0$ and (2.2), that $\mu_{\hat{x}, n}^{M}\left(A^{m}\right)$ for $A^{m} \in Q^{m}$ and $\sharp E_{n}^{M}(x) / n$ are converging to $\hat{\xi}^{M}\left(A^{m}\right)$ and β_{M} respectively uniformly in $x \in \mathrm{~F}$ when n goes to infinity. Then we get by taking the limit in n :

$$
\begin{aligned}
\underset{n}{\limsup } \frac{1}{n} H_{\hat{\zeta}^{+}}\left(Q^{\mathrm{E}_{n}^{M}} \mid \pi^{-1} \mathrm{E}_{n}^{M}\right) \leq & \beta_{M} \frac{1}{m} H_{\hat{\xi}^{M}}\left(Q^{m}\right)+\frac{12 m \log \sharp Q}{M}, \\
h(\nu)-\iota \leq \liminf _{n} \frac{1}{n} H_{\zeta}\left(P^{n}\right) \leq & \beta_{M} \frac{1}{m} H_{\hat{\xi}^{M}}\left(Q^{m}\right)+\underset{n}{\lim \sup } \frac{1}{n} H_{\hat{\zeta}^{+}}\left(\pi^{-1} P^{n} \mid Q^{\mathrm{E}_{n}^{M}}\right) \\
& +H(2 / M)+\frac{12 m \log \sharp Q}{M}
\end{aligned}
$$

2.5. Bounding the entropy of the neutral component. For a \mathcal{C}^{1} diffeomorphism f on M we put $C(f):=2 A_{f} H\left(A_{f}^{-1}\right)+\frac{\log ^{+}\|d f\|_{\infty}}{r}+B_{r}$ with $A_{f}=\log ^{+}\|d f\|_{\infty}+\log ^{+}\left\|d f^{-1}\right\|_{\infty}+1$ and a universal constant B_{r} depending only r precised later on. Clearly $f \mapsto C(f)$ is continuous in the \mathcal{C}^{1} topology and $\frac{\lambda^{+}(f)}{r}=\lim _{\mathbb{N} \ni p \rightarrow+\infty} \frac{C\left(f^{p}\right)}{p}$ whenever $\lambda^{+}(f)>0$ (indeed $A_{f^{p}} \xrightarrow{p}+\infty$, therefore $H\left(A_{f^{p}}^{-1}\right) \xrightarrow{p} 0$). In particular, if $\frac{\lambda^{+}(f)}{r}<\alpha$ and $f_{k} \xrightarrow{k} f$ in the \mathcal{C}^{1} topology, then there is p with $\lim _{k} \frac{C\left(f_{k}^{p}\right)}{p}<\alpha$.

In this section we consider the empirical measures associated to an ergodic hyperbolic measure ν with $\lambda^{+}(\nu)>\frac{\log \|d f\|_{\infty}}{r}+\delta, \delta>0$. Without loss of generality we can assume $\delta<\frac{r-1}{r} \log 2$. Then as observed in Subsection 2.2 we have $\hat{\nu}^{+}\left(H_{\delta}\right)>0$. For $x \in \mathcal{R}$ we let $m_{n}(x)=\max \left\{k<n, F^{k} \hat{x} \in H_{\delta}\right\}$. By a standard application of the ergodic theorem we have

$$
\frac{m_{n}(x)}{n} \xrightarrow{n} 1 \text { for } \nu \text { a.e. } x .
$$

By taking a smaller subset F , we can assume the above convergence of m_{n} is uniform on F and that $\sup _{x \in \mathrm{~F}} \min \left\{k \leq n, F^{k} \hat{x} \in H_{\delta}\right\} \leq N$ for some positive integer N.

We bound the term $\lim \sup _{n} \frac{1}{n} H_{\hat{\zeta}^{+}}\left(\pi^{-1} P^{n} \mid Q^{\mathrm{E}_{n}^{M}}\right)$ in the right member of (2.4) Lemma 3, which corresponds to the local entropy contribution plus the entropy in the neutral part.
Lemma 5. There is $\kappa>0$ such that the empirical measures associated to $G:=\pi^{-1} G_{\kappa} \cap H_{\delta}$ satisfy the following properties. For all $q, M \in \mathbb{N}^{*}$, there are $\epsilon_{q}>0$ (depending only on $\left.\left\|d^{k}\left(f^{q}\right)\right\|_{\infty}, 2 \leq q \leq r^{\S}\right)$ and $\gamma_{q, M}(f)>0$ with

$$
\begin{equation*}
\forall K>0 \quad \lim \sup \limsup _{M}\left(\sup _{f}\left\{\gamma_{q, M}(f) \mid\|d f\|_{\infty} \vee\left\|d f^{-1}\right\|_{\infty}<K\right\}\right)=0 \tag{2.5}
\end{equation*}
$$

such that for any partition Q of $\mathbb{P} T \mathbf{M}$ with diameter less than ϵ_{q}, we have:

$$
\begin{aligned}
\limsup _{n} \frac{1}{n} H_{\hat{\zeta}^{+}}\left(\pi^{-1} P^{n} \mid Q^{\mathrm{E}_{n}^{M}}\right) \leq & \left(1-\beta_{M}\right) C(f) \\
& +\left(\log 2+\frac{1}{r-1}\right)\left(\int \frac{\log ^{+}\left\|d f^{q}\right\|}{q} d \xi^{M}-\int \phi d \hat{\xi}^{M}\right) \\
& +\gamma_{q, M}(f) .
\end{aligned}
$$

The proof of Lemma 5 appears after the statement of Proposition 4, which is a semi-local Reparametrization Lemma.

Proposition 4. There is $\kappa>0$ such that the empirical measures associated to $G:=\pi^{-1} G_{\kappa} \cap$ H_{δ} satisfy the following properties. For all $q \in \mathbb{N}^{*}$ there are $\epsilon_{q}>0$ (depending only on $\left.\left\|d^{k}\left(f^{q}\right)\right\|_{\infty}, 2 \leq q \leq r\right)$ and $\gamma_{q, M}(f)>0$ with

$$
\forall K>0 \underset{q}{\limsup } \limsup _{M}\left(\sup _{f}\left\{\gamma_{q, M}(f) \mid\|d f\|_{\infty} \vee\left\|d f^{-1}\right\|_{\infty}<K\right\}\right)=0
$$

such that for any partition Q with diameter less than $\epsilon<\epsilon_{q}$, the following property holds for n large enough.

Any atom F_{n} of the partition $Q^{\mathrm{E}_{n}^{M}}$ may be covered by a family $\Psi_{F_{n}}$ of \mathcal{C}^{r} curves $\psi:[-1,1] \rightarrow$ \mathbf{M} satisfying $\left\|d\left(f^{k} \circ \psi\right)\right\|_{\infty} \leq 1$ for any $k=0, \cdots, n-1$, such that

$$
\begin{aligned}
\frac{1}{n} \log \sharp \Psi_{F_{n}} \leq & \left(1-\frac{\sharp E_{n}^{M}}{n}\right) C(f) \\
& +\left(\log 2+\frac{1}{r-1}\right)\left(\int \frac{\log ^{+}\left\|d_{x} f^{q}\right\|_{\epsilon}}{q} d \zeta_{F_{n}}^{M}(x)-\int \phi d \hat{\zeta}_{F_{n}}^{M}\right) \\
& +\gamma_{q, M}(f)+\tau_{n},
\end{aligned}
$$

where $\lim _{n} \tau_{n}=0, E_{n}^{M}=E_{n}^{M}(x)$ for $x \in F_{n}, \hat{\zeta}_{F_{n}}^{M}=\int \mu_{\hat{x}, n}^{M} d \zeta_{F_{n}}(x)$ and $\zeta_{F_{n}}^{M}=\pi_{*} \hat{\zeta}_{F_{n}}^{M}$ its push-forward on \mathbf{M}.

The proof of Proposition 4 is given in the last section. Proposition 4 is very similar to the Reparametrization Lemma in [4]. Here we reparametrize an atom F_{n} of $Q^{\mathrm{E}_{n}^{M}}$ instead of Q^{n} in [4].
${ }^{\S}$ Here

$$
\left\|d^{k}\left(f^{q}\right)\right\|_{\infty}=\sup _{\alpha \in \mathbb{N}^{2},|\alpha|=k} \sup _{x, y}\left\|\partial_{y}^{\alpha}\left(\exp _{f(x)}^{-1} \circ f \circ \exp _{x}\right)(\cdot)\right\|_{\infty}
$$

David Burguet

Proof of Lemma 5 assuming Proposition 4. We take $\kappa>0$ and $\epsilon_{q}>0$ as in Proposition 4. Observe that

$$
H_{\hat{\zeta}^{+}}\left(\pi^{-1} P^{n} \mid Q^{\mathrm{E}_{n}^{M}}\right) \leq \sum_{F_{n} \in Q^{\mathrm{E}_{n}^{M}}} \hat{\zeta}^{+}\left(F_{n}\right) \log \sharp\left\{A^{n} \in P^{n}, \pi^{-1}\left(A^{n}\right) \cap \hat{\mathrm{F}} \cap F_{n} \neq \emptyset\right\} .
$$

As $\nu(\partial P)=0$, for all $\gamma>0$, there is $\chi>0$ and a continuous function $\vartheta: \mathbf{M} \rightarrow \mathbb{R}^{+}$equal to 1 on the χ-neighborhood ∂P^{χ} of ∂P satisfying $\int \vartheta d \nu<\gamma$. Then we have uniformly in $x \in \mathrm{~F}$ by (2.3):

$$
\begin{equation*}
\limsup _{n} \frac{1}{n} \sharp\left\{0 \leq k<n, f^{k} x \in \partial P^{\chi}\right\} \leq \lim _{n} \frac{1}{n} \sum_{k=0}^{n-1} \vartheta\left(f^{k} x\right)=\int \vartheta d \nu<\gamma . \tag{2.6}
\end{equation*}
$$

Assume that for arbitrarily large n there is $F_{n} \in Q^{\mathrm{E}_{n}^{M}}$ and $\psi \in \Psi_{F_{n}}$ with $\sharp\left\{A^{n} \in P^{n}, A^{n} \cap\right.$ $\psi([-1,1]) \cap \mathrm{F} \neq \emptyset\}>\left(\left[\chi^{-1}\right]+1\right) \sharp P^{\gamma n}$. We reparametrize ψ on F by $\left[\chi^{-1}\right]+1$ affine contractions θ so that the length of $f^{k} \circ \psi \circ \theta$ is less than χ for all $0 \leq k<n$ and $(\psi \circ \theta)([-1,1]) \cap \mathrm{F} \neq \emptyset$. Then we have $\sharp\left\{0 \leq k<n, \partial P \cap f^{k} \circ \psi \circ \theta([-1,1]) \neq \emptyset\right\}>\gamma n$ for some θ. In particular we get $\sharp\left\{0 \leq k<n, f^{k} x \in \partial P^{\chi}\right\}>\gamma n$ for any $x \in \psi \circ \theta([-1,1])$, which contradicts (2.6). Therefore we have

$$
\limsup _{n} \sup _{F_{n}, \psi \in \Psi_{F_{n}}} \frac{1}{n} \log \left\{A^{n} \in P^{n}, A^{n} \cap \psi([-1,1]) \cap \mathrm{F} \neq \emptyset\right\}=0 .
$$

Together with Proposition 4 we get

$$
\begin{aligned}
\underset{n}{\limsup } \frac{1}{n} H_{\hat{\zeta}^{+}}\left(\pi^{-1} P^{n} \mid Q^{\mathrm{E}_{n}^{M}}\right) & \leq \limsup _{n} \sum_{F_{n} \in Q^{\mathrm{E}}{ }_{n}^{M}} \hat{\zeta}^{+}\left(F_{n}\right) \frac{1}{n} \log \sharp \Psi_{F_{n}}, \\
& \leq \limsup _{n} \sum_{F_{n} \in Q^{\mathrm{E}_{n}^{M}}} \hat{\zeta}^{+}\left(F_{n}\right)\left(1-\frac{\sharp E_{n}^{M}}{n}\right) C(f)+ \\
& +\limsup _{n} \sum_{F_{n} \in Q^{E_{n}^{M}}} \hat{\zeta}^{+}\left(F_{n}\right)\left(\log 2+\frac{1}{r-1}\right)\left(\int \frac{\log ^{+}\left\|d f^{q}\right\|}{q} d \zeta_{F_{n}}^{M}-\int \phi d \hat{\zeta}_{F_{n}}^{M}\right) \\
& +\gamma_{q, M}(f), \\
& \leq\left(1-\beta_{M}\right) C(f)+\left(\log 2+\frac{1}{r-1}\right)\left(\int \frac{\log ^{+}\left\|d f^{q}\right\|}{q} d \xi^{M}-\int \phi d \hat{\xi}^{M}\right)+\gamma_{q, M}(f) .
\end{aligned}
$$

This concludes the proof of Lemma 5.
2.6. Proof of the Main Theorem. We first reduce the Main Theorem to the following statement.
Proposition 5. Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence of \mathcal{C}^{r}, with $r>1$, surface diffeomorphisms converging \mathcal{C}^{r} weakly to a diffeomorphism f. Assume there is a sequence $\left(\hat{\nu}_{k}^{+}\right)_{k}$ of ergodic F_{k}-invariant measures converging to $\hat{\mu}$ with $\lim _{k} \lambda^{+}\left(\nu_{k}\right)>\frac{\log ^{+}\|d f\|_{\infty}}{r}$.

Then, there are F-invariant measures $\hat{\mu}_{0}$ and $\hat{\mu}_{1}^{+}$with $\hat{\mu}=(1-\beta) \hat{\mu}_{0}+\beta \hat{\mu}_{1}^{+}, \beta \in[0,1]$, such that:

$$
\limsup _{k \rightarrow+\infty} h\left(\nu_{k}\right) \leq \beta h\left(\mu_{1}\right)+(1-\beta) C(f) .
$$

Proof of the Main Theorem assuming Proposition 5. Let $\left(\hat{\nu}_{k}^{+}\right)_{k}$ be a sequence of ergodic $F_{k^{-}}$ invariant measures converging to $\hat{\mu}$.

As previously mentionned, for any $\alpha>\lambda^{+}(f) / r$ there is $p \in \mathbb{N}^{*}$ with $\alpha>\frac{C\left(f^{p}\right)}{p}$. We can also assume $\frac{\log \left\|d f^{p}\right\|_{\infty}}{p r}<\alpha$. Let $\hat{\nu}_{k}^{+, p}$ be an ergodic component of $\hat{\nu}_{k}^{+}$for F_{k}^{p} and let us denote by ν_{k}^{p} its push forward on \mathbf{M}. We have $h_{f_{k}^{p}}\left(\nu_{k}^{p}\right)=p h_{f_{k}}\left(\nu_{k}\right)$ for all k. By taking a subsequence we can assume that $\left(\hat{\nu}_{k}^{+, p}\right)_{k}$ is converging. Its limit $\hat{\mu}^{p}$ satisfies $\frac{1}{p} \sum_{0 \leq l<p} F_{*}^{k} \hat{\mu}^{p}=\hat{\mu}$. If $\lim _{k} \lambda^{+}\left(\nu_{k}^{p}\right)<\frac{\log ^{+}\left\|d f^{p}\right\|_{\infty}}{r}<p \alpha$, then by Ruelle's inequality we get

$$
\begin{aligned}
\limsup _{k \rightarrow+\infty} h_{f_{k}}\left(\nu_{k}\right) & =\limsup _{k \rightarrow+\infty} \frac{1}{p} h_{f_{k}^{p}}\left(\nu_{k}^{p}\right) \\
& \leq \lim _{k \rightarrow+\infty} \frac{1}{p} \lambda^{+}\left(\nu_{k}^{p}\right) \\
& \leq \alpha
\end{aligned}
$$

This proves the Main Theorem with $\beta=1$.
We consider then the case $\lim _{k} \lambda^{+}\left(\nu_{k}^{p}\right)>\frac{\log ^{+}\left\|d f^{p}\right\|_{\infty}}{r}$. By applying Proposition 4 to the p-power systems, we get F^{p}-invariant measure $\hat{\mu}_{0}^{p}$ and $\hat{\mu}_{1}^{+, p}$ with $\hat{\mu}^{p}=(1-\beta) \hat{\mu}_{0}^{p}+\beta \hat{\mu}_{1}^{+, p}$, $\beta \in[0,1]$, such that we have with $\mu_{1}^{p}=\pi_{*} \hat{\mu}_{1}^{+, p}$:

$$
\limsup _{k \rightarrow+\infty} h_{f_{k}^{p}}\left(\nu_{k}^{p}\right) \leq \beta h_{f^{p}}\left(\mu_{1}^{p}\right)+(1-\beta) C\left(f^{p}\right) .
$$

But $h_{f^{p}}\left(\mu_{1}^{p}\right)=p h_{f}\left(\mu_{1}\right)$ with $\mu_{1}=\frac{1}{p} \sum_{0 \leq l<p} f^{k} \mu_{1}^{p}$. One easily checks that $\hat{\mu}_{1}^{+}=\frac{1}{p} \sum_{0 \leq l<p} F^{k} \hat{\mu}_{1}^{+, p}$. Moreover we have :

$$
\begin{aligned}
\limsup _{k \rightarrow+\infty} h_{f_{k}}\left(\nu_{k}\right) & =\limsup _{k \rightarrow+\infty} \frac{1}{p} h_{f_{k}^{p}}\left(\nu_{k}^{p}\right) \\
& \leq \beta \frac{1}{p} h_{f^{p}}\left(\mu_{1}^{p}\right)+(1-\beta) \frac{C\left(f^{p}\right)}{p}, \\
& \leq \beta h_{f}\left(\mu_{1}\right)+(1-\beta) \alpha .
\end{aligned}
$$

We show now Proposition 5 by using Lemma 5. Without loss of generality we can assume $\liminf _{k} h\left(\nu_{k}\right)>0$. For μ a.e. x, we have $\lambda^{-}(x) \leq 0$. If not, some ergodic component $\tilde{\mu}$ of μ would have two positive Lyapunov exponents and therefore should be the periodic measure at a source S (see e.g. Proposition 4.4 in [17]). But then for large k the probability ν_{k} would give positive measure to the basin of attraction of the sink S for f^{-1} and therefore ν_{k} would be equal to $\tilde{\mu}$ contradicting $\liminf _{k} h\left(\nu_{k}\right)>0$.

Let $\delta>0$ with $\lim _{k} \lambda^{+}\left(\nu_{k}\right)>\frac{\log \|d f\|_{\infty}}{r}+\delta$. Then take κ as in Lemma 5. We consider the empirical measures associated to $G=\pi^{-1} G_{\kappa} \cap H_{\delta}$. By a diagonal argument, there is a subsequence in k such that the geometric component $\hat{\xi}_{k}^{M}$ of $\hat{\nu}_{k}^{+}$is converging to some $\hat{\xi}_{\infty}^{M}$ for all $M \in \mathbb{N}$. Let us also denote by β_{M}^{∞} the limit in k of β_{M}^{k}. Then consider a subsequence in M such that $\hat{\xi}_{\infty}^{M}$ is converging to $\beta \hat{\mu}_{1}$ with $\beta=\lim _{M} \beta_{M}^{\infty}$. We also let $(1-\beta) \hat{\mu}_{0}=\hat{\mu}-\beta \hat{\mu}_{1}$. In this way, $\hat{\mu}_{0}$ and $\hat{\mu}_{1}$ are both probability measures.

Lemma 6. The measures $\hat{\mu}_{0}$ and $\hat{\mu}_{1}$ satisfy the following properties:

- $\hat{\mu}_{1}$ and $\hat{\mu}_{0}$ are F-invariant,
- $\lambda^{+}(x) \geq \delta$ for μ_{1}-a.e. x and $\hat{\mu}_{1}=\hat{\mu}_{1}^{+}$.

Proof. The neutral blocks in the complement set of $E^{M}(x)$ have length larger than M. Therefore for any continuous function $\varphi: \mathbb{P} T \mathbf{M} \rightarrow \mathbb{R}$ and for any k, we have

$$
\left|\int \varphi d \hat{\xi}_{k}^{M}-\int \varphi \circ F d \hat{\xi}_{k}^{M}\right| \leq \frac{2 \sup _{\hat{x}}|\varphi(\hat{x})|}{M}
$$

Letting k, then M go to infinity, we get $\int \varphi d \hat{\mu}_{1}=\int \varphi \circ F d \hat{\mu}_{1}$, i.e. $\hat{\mu}_{1}$ is F-invariant.
We let K_{M} be the compact subset of $\mathbb{P T M}$ given by $K_{M}=\{\hat{x} \in \mathbb{P} T \mathbf{M}, \exists 1 \leq m \leq$ $\left.M \phi_{m}(\hat{x}) \geq m \delta\right\}$. Let $\hat{x} \in \mathrm{G}_{k}$, where G_{k} is the set where the empirical measures are converging to $\hat{\xi}_{k}^{M}$ (see Subsection 2.1). Observe that

$$
\begin{equation*}
\lim _{n} \mu_{\hat{x}, n}^{M}\left(K_{M}\right)=\hat{\xi}_{k}^{M}\left(K_{M}\right)=\hat{\xi}_{k}^{M}(\mathbb{P} T \mathbf{M}) . \tag{2.7}
\end{equation*}
$$

Indeed for any $k \in E^{M}(\hat{x})$ there is $1 \leq m \leq M$ with $F^{m}\left(F^{k} \hat{x}\right) \in G \subset H_{\delta}$. Moreover, as already mentioned, δ-hyperbolic points w.r.t. ψ are δ-hyperbolic w.r.t. ϕ. Therefore $\phi_{m}\left(F^{k} \hat{x}\right) \geq m \delta$. Consequently we have $\lim _{n} \mu_{\hat{x}, n}^{M}\left(K_{M}\right)=\lim _{n} \mu_{\hat{x}, n}^{M}(\mathbb{P} T \mathbf{M})=\xi_{k}^{M}(\mathbb{P} T \mathbf{M})$. The set K_{M} being compact in $\mathbb{P} T \mathbf{M}$, we get $\xi_{k}^{M}\left(K_{M}\right) \geq \lim _{n} \mu_{\hat{x}, n}^{M}\left(K_{M}\right)$ and (2.7) follows.

Also we have $\hat{\xi}_{\infty}^{M}\left(K_{M}\right) \geq \lim \sup _{k} \hat{\xi}_{k}^{M}\left(K_{M}\right)=\lim \sup _{k} \hat{\xi}_{k}^{M}(\mathbb{P} T \mathbf{M})=\beta_{M}^{\infty}$. Therefore we have $\hat{\mu}_{1}\left(\bigcup_{M} K_{M}\right)=1$ as $\hat{\xi}_{\infty}^{M}$ goes increasingly in M to $\beta \hat{\mu}_{1}$. The F-invariant set $\bigcap_{k \in \mathbb{Z}} F^{-k}\left(\bigcup_{M} K_{M}\right)$ has also full $\hat{\mu}_{1}$-measure and for all $\hat{x}=(x, v)$ in this set we have $\lim \sup _{n} \frac{1}{n} \log \left\|d_{x} f^{n}(v)\right\| \geq \delta$. Consequently the measure $\hat{\mu}_{1}$ is supported on the unstable bundle $\mathcal{E}_{+}(x)$ and $\lambda^{+}(x) \geq \delta$ for μ_{1}-a.e. x.
Remark 6. In Theorem C of [10], the measure $\beta \hat{\mu}_{1}^{+}$is obtained as the limit when δ goes to zero of the component associated to the set $G^{\delta}:=\left\{x, \forall l>0 \phi_{l}(\hat{x}) \geq \delta l\right\} \supset \pi^{-1} G_{\kappa} \cap H_{\delta}$.

We pursue now the proof of Proposition 5. Let $q, M \in \mathbb{N}^{*}$. Fix a sequence $\left(\iota_{k}\right)_{k}$ of positive numbers with $\iota_{k} \xrightarrow{k} 0$. We consider a partition Q satisfying $\operatorname{diam}(Q)<\epsilon_{q}$ with ϵ_{q} as in Lemma 5. The sequence $\left(f_{k}\right)_{k}$ being \mathcal{C}^{r} bounded, one can choose ϵ_{q} independently of $f_{k}, k \in \mathbb{N}$.

By a standard argument of countability we may assume that for all $m \in \mathbb{N}^{*}$ the boundary of Q^{m} has zero-measure for $\hat{\mu}_{1}$ and all the measures $\hat{\xi}_{k}^{M}, M \in \mathbb{N}^{*}$ and $k \in \mathbb{N} \cup\{\infty\}$. Combining Lemma 5 and Lemma 3 we get with $\gamma_{q, Q, M}(f)=\gamma_{q, M}(f)+H\left(\frac{2}{M}\right)+\frac{12 \log \sharp Q}{M}$:

$$
\begin{aligned}
h\left(\nu_{k}\right) \leq & \beta_{M}^{k} \frac{1}{m} H_{\hat{\underline{\xi}}_{k}}{ }^{M} \\
& +\left(Q^{m}\right)+\left(1-\beta_{M}^{k}\right) C\left(f_{k}\right) \\
& +\left(\log 2+\frac{1}{r-1}\right)\left(\int \frac{\log ^{+}\left\|d f_{k}^{q}\right\|}{q} d \xi_{k}^{M}-\int \phi d \hat{\xi}_{k}{ }^{M}\right) \\
& +\gamma_{q, Q, M}\left(f_{k}\right)+\iota_{k}
\end{aligned}
$$

By letting k, then M go to infinity, we obtain for all m :

$$
\begin{aligned}
\underset{k}{\lim \sup } h\left(\nu_{k}\right) \leq & \frac{1}{m} H_{\hat{\mu}_{1}^{+}}\left(Q^{m}\right)+(1-\beta) C(f) \\
& +\left(\log 2+\frac{1}{r-1}\right)\left(\int \frac{\log ^{+}\left\|d f^{q}\right\|}{q} d \mu_{1}-\int \phi d \hat{\mu}_{1}^{+}\right) \\
& +\limsup _{M} \sup _{k} \gamma_{q, Q, M}\left(f_{k}\right) .
\end{aligned}
$$

By letting m go to infinity, we get:

$$
\begin{aligned}
\underset{k}{\lim \sup } h\left(\nu_{k}\right) \leq & \beta h\left(\hat{\mu}_{1}^{+}\right)+(1-\beta) C(f) \\
& +\left(\log 2+\frac{1}{r-1}\right)\left(\int \frac{\log ^{+}\left\|d f^{q}\right\|}{q} d \mu_{1}-\int \phi d \hat{\mu}_{1}^{+}\right) \\
& +\limsup _{M} \sup _{k} \gamma_{q, M}\left(f_{k}\right) .
\end{aligned}
$$

But $h\left(\hat{\mu}_{1}^{+}\right)=h\left(\mu_{1}\right)$ (see e.g. Corollary 4.2 in [10]) and $\int \phi d \hat{\mu}_{1}^{+}=\lambda^{+}\left(\mu_{1}\right)=\lim _{q} \int \frac{\log ^{+}\left\|d f^{q}\right\|}{q} d \mu_{1}$. Therefore by letting q go to infinity we finally obtain with the asymptotic property (2.5) of $\gamma_{q, M}$:

$$
\underset{k}{\lim \sup } h\left(\nu_{k}\right) \leq \beta h\left(\mu_{1}\right)+(1-\beta) C(f) .
$$

3. Semi-local Reparametrization Lemma

In this section we prove the semi-local Reparametrization Lemma stated in Proposition 4.
3.1. Strongly bounded curves. To simplify the exposition (by avoiding irrelevant technical details involving the exponential map) we assume that \mathbf{M} is the two-torus \mathbb{T}^{2} with the usual Riemannian structure inherited from \mathbb{R}^{2}. Borrowing from [2] we first make the following definitions.

A \mathcal{C}^{r} embedded curve $\sigma:[-1,1] \rightarrow \mathbf{M}$ is said bounded when $\max _{k=2, \cdots, r}\left\|d^{k} \sigma\right\|_{\infty} \leq \frac{\|d \sigma\|_{\infty}}{6}$.
Lemma 7. Assume σ is a bounded curve. Then for any $x \in \sigma([-1,1])$, the curve σ contains the graph of a κ-admissible map at x with $\kappa=\frac{\|d \sigma\|_{\infty}}{6}$.
Proof. Let $x=\sigma(s), s \in[-1,1]$. One checks easily (see Lemma 7 in [4] for further details) that for all $t \in[-1,1]$ the angle $\angle \sigma^{\prime}(s), \sigma^{\prime}(t)<\frac{\pi}{6} \leq 1$ and therefore $\int_{0}^{1} \sigma^{\prime}(t) \cdot \frac{\sigma^{\prime}(s)}{\left\|\sigma^{\prime}(s)\right\|} d t \geq \frac{\|d \sigma\|_{\infty}}{6}$. Therefore, as $\sigma^{\prime}(s) \in \mathcal{E}_{+}(x)$, the image of σ contains the graph of an $\frac{\|d \sigma\|_{\infty}}{6}$-admissible map at x.

A \mathcal{C}^{r} bounded curve $\sigma:[-1,1] \rightarrow \mathbf{M}$ is said strongly ϵ-bounded for $\epsilon>0$ if $\|d \sigma\|_{\infty} \leq \epsilon$. For $n \in \mathbb{N}^{*}$ and $\epsilon>0$ a curve is said strongly (n, ϵ)-bounded when $f^{k} \circ \sigma$ is strongly ϵ-bounded for all $k=0, \cdots, n-1$.

We consider a \mathcal{C}^{r} smooth diffeomorphism $g: \mathbf{M} \circlearrowleft$ with $\mathbb{N} \ni r \geq 2$. For $\hat{x}=(x, v) \in \mathbb{P} T \mathbf{M}$ with $\pi(\hat{x})=x$, we let $k_{g}(x) \geq k_{g}^{\prime}(\hat{x})$ be the following integers:

$$
\begin{gathered}
k_{g}(x):=\left[\log \left\|d_{x} g\right\|\right] \\
k_{g}^{\prime}(\hat{x}):=\left[\log \left\|d_{x} g(v)\right\|\right]=\left[\phi_{g}(\hat{x})\right] .
\end{gathered}
$$

In the next lemma, we reparametrize the image by g of a bounded curve. The proof of this lemma is mostly contained in the proof of the Reparametrization Lemma [2], but we reproduce it for the sake of completeness.

Lemma 8. Let $\frac{R_{\text {inj }}}{2}>\epsilon=\epsilon_{g}>0$ satisfying $\left\|d^{s} g_{2 \epsilon}^{x}\right\|_{\infty} \leq 3 \epsilon\left\|d_{x} g\right\|$ for all $s=1, \cdots, r$ and all $x \in \mathbf{M}$, where $g_{2 \epsilon}^{x}=g \circ \exp _{x}(2 \epsilon \cdot)=g(x+2 \epsilon \cdot):\left\{w_{x} \in T_{x} \mathbf{M},\left\|w_{x}\right\| \leq 1\right\} \rightarrow \mathbf{M}$. We assume $\sigma:[-1,1] \rightarrow \mathbf{M}$ is a strongly ϵ-bounded \mathcal{C}^{r} curve and we let $\hat{\sigma}:[-1,1] \rightarrow \mathbb{P} T \mathbf{M}$ be the associated induced map.

Then for some universal constant $C_{r}>0$ depending only on r and for any pair of integers $\left(k, k^{\prime}\right)$ there is a family Θ of affine maps from $[-1,1]$ to itself satisfying:

- $\hat{\sigma}^{-1}\left(\left\{\hat{x} \in \mathbb{P} T \mathbf{M}, k_{g}(x)=k\right.\right.$ and $\left.\left.k_{g}^{\prime}(\hat{x})=k^{\prime}\right\}\right) \subset \bigcup_{\theta \in \Theta} \theta([-1,1])$,
- $\forall \theta \in \Theta$, the curve $g \circ \sigma \circ \theta$ is bounded,
- $\forall \theta \in \Theta,\left|\theta^{\prime}\right| \leq e^{\frac{k^{\prime}-k-1}{r-1}} / 4$,
- $\sharp \Theta \leq C_{r} e^{\frac{k-k^{\prime}}{r-1}}$.

Proof. First step : Taylor polynomial approximation. One computes for an affine map $\theta:[-1,1] \circlearrowleft$ with contraction rate b precised later and with $y=\sigma(t), k_{g}(y)=k, k_{g}^{\prime}(y)=k^{\prime}$, $t \in \theta([-1,1])$:

$$
\begin{aligned}
\left\|d^{r}(g \circ \sigma \circ \theta)\right\|_{\infty} & \leq b^{r}\left\|d^{r}\left(g_{2 \epsilon}^{y} \circ \sigma_{2 \epsilon}^{y}\right)\right\|_{\infty}, \text { with } \sigma_{2 \epsilon}^{y}:=(2 \epsilon)^{-1} \exp _{y}^{-1} \circ \sigma=2 \epsilon^{-1}(\sigma(\cdot)-y), \\
& \leq b^{r}\left\|d^{r-1}\left(d_{\sigma_{2 \epsilon}^{y}}^{y} g_{2 \epsilon}^{y} \circ d \sigma_{2 \epsilon}^{y}\right)\right\|_{\infty} \\
& \leq b^{r} 2^{r} \max _{s=0, \cdots, r-1}\left\|d^{s}\left(d_{\sigma_{2 \epsilon}^{y}} g_{2 \epsilon}^{y}\right)\right\|_{\infty} \max _{k=1, \cdots, r}\left\|d^{k} \sigma_{2 \epsilon}^{y}\right\|_{\infty} .
\end{aligned}
$$

By assumption on ϵ, we have $\left\|d^{s} g_{2 \epsilon}^{y}\right\|_{\infty} \leq 3 \epsilon\left\|d_{y} g\right\|$ for any $r \geq s \geq 1$. Moreover $\max _{k=1, \cdots, r}\left\|d^{k} \sigma_{2 \epsilon}^{y}\right\|_{\infty} \leq$ 1 as σ is strongly ϵ-bounded. Therefore by Faá di Bruno's formula, we get for some ${ }^{\mathbb{G}}$ constants $C_{r}>0$ depending only on r :
$\max _{s=0, \cdots, r-1}\left\|d^{s}\left(d_{\sigma_{2 \epsilon}^{y}} g_{2 \epsilon}^{y}\right)\right\|_{\infty} \leq \epsilon C_{r}\left\|d_{y} g\right\|$,
then ,

$$
\begin{aligned}
\left\|d^{r}(g \circ \sigma \circ \theta)\right\|_{\infty} & \leq \epsilon C_{r} b^{r}\left\|d_{y} g\right\|_{k=1, \cdots, r}\left\|d^{k} \sigma_{2 \epsilon}^{y}\right\|_{\infty} \\
& \leq C_{r} b^{r}\left\|d_{y} g\right\|\|d \sigma\|_{\infty} \\
& \leq\left(C_{r} b^{r-1}\left\|d_{y} g\right\|\right)\|d(\sigma \circ \theta)\|_{\infty}, \\
& \leq\left(C_{r} b^{r-1} e^{k}\right)\|d(\sigma \circ \theta)\|_{\infty}, \text { because } k(y)=k, \\
& \leq e^{k^{\prime}-4}\|d(\sigma \circ \theta)\|_{\infty}, \text { by taking } b=\left(C_{r} e^{k-k^{\prime}+4}\right)^{-\frac{1}{r-1}} .
\end{aligned}
$$

Therefore the Taylor polynomial P at 0 of degree $r-1$ of $d(g \circ \sigma \circ \theta)$ satisfies on $[-1,1]$:

$$
\|P-d(g \circ \sigma \circ \theta)\|_{\infty} \leq e^{k^{\prime}-4}\|d(\sigma \circ \theta)\|_{\infty} .
$$

We may cover $[-1,1]$ by at most $b^{-1}+1$ such affine maps θ.
Second step : Bezout theorem. Let $a=e^{k^{\prime}}\|d(\sigma \circ \theta)\|_{\infty}$. Note that for $s \in[-1,1]$ with $k(\sigma \circ \theta(s))=k$ and $k^{\prime}(\sigma \circ \theta(s))=k^{\prime}$ we have $\|d(g \circ \sigma \circ \theta)(s)\| \in\left[a e^{-2}, a e^{2}\right]$, therefore $\|P(s)\| \in\left[a e^{-3}, a e^{3}\right]$. Moreover if we have now $\|P(s)\| \in\left[a e^{-3}, a e^{3}\right]$ for some $s \in[-1,1]$ we get also $\|d(g \circ \sigma \circ \theta)(s)\| \in\left[a e^{-4}, a e^{4}\right]$.

[^3]By Bezout theorem the semi-algebraic set $\left\{s \in[-1,1],\|P(s)\| \in\left[e^{-3} a, e^{3} a\right]\right\}$ is the disjoint union of closed intervals $\left(J_{i}\right)_{i \in I}$ with $\sharp I$ depending only on r. Let θ_{i} be the composition of θ with an affine reparametrization from $[-1,1]$ onto J_{i}.

Third step : Landau-Kolmogorov inequality. By the Landau-Kolmogorov inequality on the interval (see Lemma 6 in [2]), we have for some constants $C_{r} \in \mathbb{N}^{*}$ and for all $1 \leq s \leq r$:

$$
\begin{aligned}
\left\|d^{s}\left(g \circ \sigma \circ \theta_{i}\right)\right\|_{\infty} & \leq C_{r}\left(\left\|d^{r}\left(g \circ \sigma \circ \theta_{i}\right)\right\|_{\infty}+\left\|d\left(g \circ \sigma \circ \theta_{i}\right)\right\|_{\infty}\right), \\
& \leq C_{r} \frac{\left|J_{i}\right|}{2}\left(\left\|d^{r}(g \circ \sigma \circ \theta)\right\|_{\infty}+\sup _{t \in J_{i}}\|d(g \circ \sigma \circ \theta)(t)\|\right), \\
& \leq C_{r} a \frac{\left|J_{i}\right|}{2} .
\end{aligned}
$$

We cut again each J_{i} into $1000 C_{r}$ intervals \tilde{J}_{i} of the same length with

$$
\theta\left(\tilde{J}_{i}\right) \cap \sigma^{-1}\left\{x, k_{g}(x)=k \text { and } k_{g}^{\prime}(x)=k^{\prime}\right\} \neq \emptyset .
$$

Let $\tilde{\theta}_{i}$ be the affine reparametrization from $[-1,1]$ onto $\theta\left(\tilde{J}_{i}\right)$. We check that $g \circ \sigma \circ \tilde{\theta}_{i}$ is bounded:

$$
\begin{aligned}
\forall s=2, \cdots, r,\left\|d^{s}\left(g \circ \sigma \circ \tilde{\theta}_{i}\right)\right\|_{\infty} & \leq\left(1000 C_{r}\right)^{-2}\left\|d^{s}\left(g \circ \sigma \circ \theta_{i}\right)\right\|_{\infty}, \\
& \leq \frac{1}{6}\left(1000 C_{r}\right)^{-1} \frac{\left|J_{i}\right|}{2} a_{n} e^{-4}, \\
& \leq \frac{1}{6}\left(1000 C_{r}\right)^{-1} \frac{\left|J_{i}\right|}{2} \min _{s \in J_{i}}\|d(g \circ \sigma \circ \theta)(s)\|, \\
& \leq \frac{1}{6}\left(1000 C_{r}\right)^{-1} \frac{\left|J_{i}\right|}{2} \min _{s \in \tilde{J}_{i}}\|d(g \circ \sigma \circ \theta)(s)\|, \\
& \leq \frac{1}{6}\left\|d\left(g \circ \sigma \circ \tilde{\theta}_{i}\right)\right\|_{\infty} .
\end{aligned}
$$

This conclude the proof with Θ being the family of all $\tilde{\theta}_{i}$'s.
We recall now a useful property of bounded curve (see Lemma 7 in [4] for a proof).
Lemma 9. Let $\sigma:[-1,1] \rightarrow \mathbf{M}$ be a \mathcal{C}^{r} bounded curve and let B be a ball of radius less than ϵ. Then there exists an affine map $\theta:[-1,1] \circlearrowleft$ such that :

- $\sigma \circ \theta$ is strongly 3ϵ-bounded,
- $\theta([-1,1]) \supset \sigma^{-1} B$.
3.2. Choice of the parameters κ and ϵ_{q}. For a diffeomorphism $f: \mathbf{M} \circlearrowleft$ the scale ϵ_{f} in Lemma 8 may be chosen such that $\epsilon_{f^{k}} \leq \epsilon_{f^{l}} \leq \max \left(1,\|d f\|_{\infty}\right)^{-k}$ for any $q \geq k \geq l \geq 1$. We take $\kappa=\frac{\epsilon_{f}}{36}$ and we choose $\epsilon_{q}<\frac{\epsilon_{f} q}{3}$ such that for any $\hat{x}, \hat{y} \in \mathbb{P} T$ M which are ϵ_{q}-close and for any $0 \leq l \leq q$:

$$
\begin{align*}
& \left|k_{f^{\prime}}(x)-k_{f^{\prime}}(y)\right| \leq 1, \tag{3.1}\\
& \left|k_{f^{\prime}}^{\prime}(\hat{x})-k_{f^{l}}^{\prime}(\hat{y})\right| \leq 1 .
\end{align*}
$$

Without loss of generality we can assume the local unstable curve D (defined in Subsection 2.3) is reparametrized by a \mathcal{C}^{r} strongly ϵ_{q}-bounded map $\sigma:[-1,1] \rightarrow D$.

Let F_{n} be an atom of the partition $Q^{\mathrm{E}_{n}^{M}}$ and let $E_{n}^{M}=E_{n}^{M}(x)$ for any $\hat{x} \in F_{n}$. Recall that the diameter of Q is less than ϵ_{q}. It follows from (3.1) that for any $\hat{x} \in F_{n}$ we have with $\hat{\zeta}_{F_{n}}^{M}=\int \mu_{\hat{x}, n}^{M} d \zeta_{F_{n}}(x):$

$$
\sum_{l \in E_{n}^{M}}\left|k_{f^{q}}\left(f^{l} x\right)-k_{f_{q}^{\prime}}^{\prime}\left(F^{l} \hat{x}\right)\right| \leq 10 \sharp E_{n}^{M}+\int \log ^{+}\left\|d_{y} f^{q}\right\| d \zeta_{F_{n}}^{M}(y)-\int \phi_{q} d \hat{\zeta}_{F_{n}}^{M} .
$$

Therefore we may fix some $0 \leq c<q$, such that for any $x \in F_{n}$

$$
\begin{aligned}
\sum_{l \in(c+q \mathbb{N}) \cap E_{n}^{M}}\left|k_{f_{q}}\left(f^{l} x\right)-k_{f q}^{\prime}\left(F^{l} \hat{x}\right)\right| & \leq 10 \frac{n}{q}+\frac{1}{q}\left(\int \log ^{+}\left\|d_{y} f^{q}\right\| d \zeta_{F_{n}}^{M}(y)-\int \phi_{q} d \hat{\zeta}_{F_{n}}^{M}\right) \\
& \leq 10 \frac{n}{q}+2 A_{f} \frac{q n}{M}+\frac{1}{q} \int \log ^{+}\left\|d_{y} f^{q}\right\| d \zeta_{F_{n}}^{M}(y)-\int \phi d \hat{\zeta}_{F_{n}}^{M}
\end{aligned}
$$

3.3. Combinatorial aspects. We put $\partial_{l} E_{n}^{M}:=\left\{a \in E_{n}^{M}\right.$ with $\left.a-1 \notin E_{n}^{M}\right\}$. Then we let $\mathcal{A}_{n}:=\left\{0=a_{1}<a_{2}<\cdots a_{m}\right\}$ be the union of $\partial_{l} E_{n}^{M},\left[0, n\left[\backslash E_{n}^{M}\right.\right.$ and $(c+q \mathbb{N}) \cap[0, n[$. We also let $b_{i}=a_{i+1}-a_{i}$ for $i=1, \cdots, m-1$ and $b_{m}=n-a_{m}$.

For a sequence $\mathbf{k}=\left(k_{l}, k_{l}^{\prime}\right)_{l \in \mathcal{A}_{n}}$ of integers, a positive integer m_{n} and a subset \bar{E} of $[0, n[$, we let $F_{n}^{\mathbf{k}, \bar{E}, m_{n}}$ be the subset of points $\hat{x} \in F_{n}$ satisfying:

- $\bar{E}=E_{n}(x) \backslash E_{n}^{M}(x)$,
- $k_{a_{i}}=k_{f^{b_{i}}}\left(f^{a_{i}} x\right)$ and $k_{a_{i}}^{\prime}=k_{f^{b_{i}}}^{\prime}\left(F^{a_{i}} \hat{x}\right)$ for $i=1, \cdots, m$,
- $m_{n}(x)=m_{n}$.

Lemma 10.

$$
\sharp\left\{\left(\mathbf{k}, \bar{E}, m_{n}\right), F_{n}^{\mathbf{k}, \bar{E}, m_{n}} \neq \emptyset\right\} \leq n e^{2 n A_{f} H\left(A_{f}^{-1}\right)} 3^{n(1 / q+1 / M)} e^{n H(1 / M)} .
$$

Proof. Firstly observe that if $a_{i} \notin E_{n}^{M}$ then $b_{i}=1$. In particular $\sum_{i, a_{i} \notin E_{n}^{M}} k_{a_{i}} \leq(n-$ $\left.\sharp E_{n}^{M}\right) \log ^{+}\|d f\|_{\infty} \leq\left(n-\sharp E_{n}^{M}\right)\left(A_{f}-1\right)$. The number of such sequences $\left(k_{a_{i}}\right)_{i, a_{i} \notin E_{n}^{M}}$ is therefore bounded above by $\binom{r_{n} A_{f}}{r_{n}}$ with $r_{n}=n-\sharp E_{n}^{M}$ and its logarithm is dominated by $r_{n} A_{f} H\left(A_{f}^{-1}\right)+1 \leq n A_{f} H\left(A_{f}^{-1}\right)+1$. Similarly the number of sequence $\left(k_{a_{i}}^{\prime}\right)_{i, a_{i} \notin E_{n}^{M}}$ is less than $n A_{f} H\left(A_{f}^{-1}\right)+1$.

Then from the choice of ϵ_{q} in (3.1) there are at most three possible values of $k_{a_{i}}(x)$ for $a_{i} \in E_{n}^{M}$ and $x \in F_{n}$.

Finally as $\sharp \bar{E} \leq n / M$, the number of admissible sets \bar{E} is less than $\binom{n}{[n / M]}$ and thus its logarithm is bounded above by $n H(1 / M)+1$. Clearly we can also fix the value of m_{n} up to a factor n.
3.4. The induction. We fix \mathbf{k}, m_{n} and \bar{E} and we reparametrize appropriately the set $F_{n}^{\mathbf{k}, \bar{E}, m_{n}}$.

Lemma 11. With the above notations there are families $\left(\Theta_{i}\right)_{i \leq m}$ of affine maps from $[-1,1]$ into itself such that :

- $\forall \theta \in \Theta_{i} \forall j \leq i$ the curve $f^{a_{i}} \circ \sigma \circ \theta$ is strongly $\epsilon_{f^{b_{i}}}$-bounded,
- $\hat{\sigma}^{-1}\left(F_{n}^{\mathbf{k}, \bar{E}, m_{n}}\right) \subset \bigcup_{\theta \in \Theta_{i}} \theta([-1,1])$,
- $\forall \theta_{i} \in \Theta_{i} \forall j<i, \exists \theta_{j}^{i} \in \Theta_{j}, \frac{\left|\theta_{i}^{\prime}\right|}{\left|\left(\theta_{j}^{i}\right)^{\prime}\right|} \leq \prod_{j \leq l<i} e^{\frac{k_{a_{l}}^{\prime}-k_{a_{l}}-1}{r-1}} / 4$,
- $\sharp \Theta_{i} \leq C \max \left(1,\|d f\|_{\infty}\right)^{\sharp \bar{E} \cap\left[1, a_{i}\right]} \prod_{j<i} C_{r} e^{\frac{k_{a_{j}-k_{a}^{\prime}}^{\prime}}{r-1}}$.

Proof. We argue by induction on $i \leq m$. By changing the constant C, it is enough to consider i with $a_{i}>N$. Recall that the integer N was chosen in such a way that for any $x \in \mathrm{~F}$ there is $0 \leq k \leq N$ with $F^{k} \hat{x} \in H_{\delta}$. We assume the family Θ_{i} for $i<m$ already built and we will define $\bar{\Theta}_{i+1}$. Let $\theta_{i} \in \Theta_{i}$. We apply Lemma 8 to the strongly $\epsilon_{f b_{i}}$-bounded curve $f^{a_{i}} \circ \sigma \circ \theta_{i}$ with $g=f^{b_{i}}$. Let Θ be the family of affine reparametrizations of $[-1,1]$ satisfying the conclusions of Lemma 8 , in particular $f^{a_{i+1}} \circ \sigma \circ \theta_{i} \circ \theta$ is bounded, $\left|\theta^{\prime}\right| \leq e^{\frac{k_{a_{i}}^{\prime}-k_{a_{i}}-1}{r-1}} / 4$ for all $\theta \in \Theta$ and $\sharp \Theta \leq C_{r} e^{\frac{k_{a_{i}-k_{a}^{\prime}}^{\prime}}{r-1}}$. We distinguish three cases:

- $a_{i+1} \in E_{n}^{M}$. The diameter of $F^{a_{i+1}} F_{n}$ is less than $\epsilon_{q} \leq \frac{{ }_{f}{ }_{f}{ }^{b}+1}{3}$. By Lemma 9 there is an affine map $\psi:[-1,1] \circlearrowleft$ such that $f^{a_{i+1}} \circ \sigma \circ \theta_{i} \circ \theta \circ \psi$ is strongly $\epsilon_{f^{b_{i+1}}}$-bounded and its image contains the intersection of the bounded curve $f^{a_{i+1}} \circ \sigma \circ \theta_{i} \circ \theta$ with $f^{a_{i+1}} F_{n}$. We let then $\theta_{i+1}=\theta_{i} \circ \theta \circ \psi \in \Theta_{i+1}$.
- $a_{i+1} \in E \backslash E_{n}^{M}$. Observe that $b_{i+1}=1$, therefore $\epsilon_{f^{b_{i}}} \leq \epsilon_{f^{b_{i+1}}}$. Then the length of the curve $f^{a_{i+1} \circ \sigma \circ} \theta_{i} \circ \theta$ is less than $3\|d f\|_{\infty} \epsilon_{f^{b_{i}}}$, thus may be covered by $\left[3\|d f\|_{\infty}\right]+1$ balls of radius less than $\epsilon_{f^{b_{i+1}}}$. We then use Lemma 9 as in the previous case to reparametrize the intersection of this curve with each ball by a strongly $\epsilon_{f^{b_{i+1}}}$-bounded curve. We define in this way the associated parametrizations of Θ_{i+1}.
 with $x=\pi(\hat{x})=\sigma \circ \theta_{i} \circ \theta(s)$. Let $K_{x}=\max \left\{k<a_{i+1}, F^{k} \hat{x} \in H_{\delta}\right\} \geq N$. Observe that $\left[K_{x}, a_{i+1}\right] \cap E_{n}^{M}=\emptyset$, therefore for $K_{x} \leq a_{l}<a_{i+1}$, we have $b_{l}=1$, then $a_{l}=a_{i+1}-i-1+l$. We argue by contradiction by assuming :

$$
\begin{equation*}
\| d\left(f^{a_{i+1}} \circ \sigma \circ \theta_{i} \circ \theta \| \geq \epsilon_{f} / 6=6 \kappa\right. \tag{3.2}
\end{equation*}
$$

By Lemma 7 , the point $f^{a_{i+1}} x$ belongs to G_{κ}. We will show $F^{a_{i+1}} \hat{x} \in H_{\delta}$. Therefore we will get $F^{a_{i+1}} \hat{x} \in G=\pi^{-1} G_{\kappa} \cap H_{\delta}$ contradicting $a_{i+1} \notin E$. To prove $F^{a_{i+1}} \hat{x} \in H_{\delta}$ it is enough to show $\sum_{j \leq l<a_{i+1}} \psi\left(F^{l} \hat{x}\right) \geq\left(a_{i+1}-j\right) \delta$ for any $K_{x} \leq j<a_{i+1}$ because $F^{K_{x}}(\hat{x})$ belongs to H_{δ}. For any $K_{x} \leq j<a_{i+1}$ we have :
$\| d\left(f^{a_{i+1}} \circ \sigma \circ \theta_{i} \circ \theta\left\|_{\infty} \leq 2\right\| d_{s}\left(f^{a_{i+1}} \circ \sigma \circ \theta_{i} \circ \theta \|\right.\right.$, because $f^{a_{i+1}} \circ \sigma \circ \theta_{i} \circ \theta$ is bounded,

$$
\begin{align*}
& \leq 2\left\|d_{f^{j} x} f^{a_{i+1}-j}(\hat{x})\right\| \times\left\|d_{s}\left(f^{a_{\bar{j}}} \circ \sigma \circ \theta_{\bar{j}}^{i}\right)\right\| \times \frac{\left|\theta_{i}^{\prime}\right| \times\left|\theta^{\prime}\right|}{\left|\left(\theta_{\bar{j}}^{i}\right)^{\prime}\right|}, \text { with } a_{\bar{j}}=j \\
& \leq \frac{\epsilon_{f}}{3}\left\|d_{f^{j} x} f^{a_{i+1}-j}(\hat{x})\right\| \prod_{\bar{j} \leq l \leq i} e^{\frac{k_{a_{l}-k_{l}-1}^{\prime}}{r-1}} / 4 \text { by induction hypothesis } \\
& \frac{1}{2} \leq\left\|d_{f^{j} x} f^{a_{i+1}-j}(\hat{x})\right\| \prod_{\bar{j} \leq l \leq i} e^{\frac{k_{a_{l}}^{\prime}-k_{a_{l}-1}}{r-1}} / 4 \text { by assumption }(3.2) \tag{3.3}
\end{align*}
$$

Recall again that for $\bar{j} \leq l \leq i$, we have $b_{l}=1$, thus

$$
\left|k_{a_{l}}-\log \left\|d_{f^{a}{ }_{l} x} f\right\|\right| \leq 1
$$

and

$$
k_{a_{l}}^{\prime} \leq \phi\left(F^{a_{l}} \hat{x}\right) .
$$

Therefore we get for any $K_{x} \leq j<a_{i+1}$ from (3.3):

$$
\begin{aligned}
2^{a_{i+1}-j} & \leq e^{\frac{r}{r-1} \sum_{j \leq l<a_{i+1}} \phi\left(F^{l} \hat{x}\right)} e^{-\frac{1}{r-1} \sum_{j \leq l<a_{i+1}} \log ^{+}\left\|d_{f l_{x} x} f\right\|}, \\
\left(a_{i+1}-j\right) \log 2 & \leq \frac{r}{r-1} \sum_{j \leq l<a_{i+1}} \psi\left(F^{l} \hat{x}\right), \text { by definition of } \psi, \\
\left(a_{i+1}-j\right) \delta & \leq \sum_{j \leq l<a_{i+1}} \psi\left(F^{l} \hat{x}\right), \text { as } \delta \text { was chosen less than } \frac{r-1}{r} \log 2 .
\end{aligned}
$$

Lemma 12.

$$
\sum_{i, m_{n}>a_{i} \notin E_{n}^{M}} \frac{k_{a_{i}}-k_{a_{i}}^{\prime}}{r-1} \leq\left(n-\sharp E_{n}^{M}\right)\left(\frac{\log ^{+}\|d f\|_{\infty}}{r}+\frac{1}{r-1}\right) .
$$

Proof. The intersection of $\left[0, m_{n}\left[\right.\right.$ with the complement set of E_{n}^{M} is the disjoint union of neutral blocks and possibly an interval of integers of the form $\left[l, m_{n}\left[\right.\right.$. In any case $F^{\mathbf{j}} \hat{x}$ belongs to H_{δ} for such an interval $\left[\mathrm{i}, \mathrm{j}\left[\right.\right.$ for any $x \in F_{n}^{\mathbf{k}, \bar{E}, m_{n}}$. In particular, we have

$$
\sum_{l, a_{l} \in[\mathrm{i}, \mathrm{j}[} k_{a_{i}}^{\prime}-\frac{k_{a_{i}}}{r} \geq(\delta-1)(\mathrm{j}-\mathrm{i})
$$

therefore

$$
\begin{aligned}
\sum_{i, m_{n}>a_{i} \notin E_{n}^{M}} k_{a_{i}}^{\prime}-\frac{k_{a_{i}}}{r} & \geq-\left(n-\sharp E_{n}^{M}\right), \\
\sum_{i, m_{n}>a_{i} \notin E_{n}^{M}} \frac{k_{a_{i}}-k_{a_{i}}^{\prime}}{r-1} & \leq \frac{n-\sharp E_{n}^{M}}{r-1}+\frac{\sum_{i, m_{n}>a_{i} \notin E_{n}^{M}} k_{a_{i}}}{r}, \\
& \leq\left(n-\sharp E_{n}^{M}\right)\left(\frac{\log ^{+}\|d f\|_{\infty}}{r}+\frac{1}{r-1}\right) .
\end{aligned}
$$

3.5. Conclusion. We let Ψ_{n} be the family of \mathcal{C}^{r} curves $\sigma \circ \theta$ for $\theta \in \Theta_{m}=\Theta_{m}\left(\mathbf{k}, \bar{E}, m_{n}\right)$ with Θ_{m} as in Lemma 11 over all admissible parameters $\mathbf{k}, \bar{E}, m_{n}$. For $\theta \in \Theta_{m}$ the curve $f^{a_{i}} \circ \sigma \circ \theta$ is strongly $\epsilon_{f^{b_{i}}}$-bounded for any $i=1, \cdots, m$, in particular

$$
\forall i=1, \cdots, m,\left\|d\left(f^{a_{i}} \circ \sigma \circ \theta\right)\right\|_{\infty} \leq \epsilon_{f^{b_{i}}} \leq \max \left(1,\|d f\|_{\infty}\right)^{-b_{i}},
$$

therefore

$$
\forall j=0, \cdots, n,\left\|d\left(f^{j} \circ \sigma \circ \theta\right)\right\|_{\infty} \leq 1
$$

By combining the previous estimates, we get moreover:

$$
\begin{aligned}
\sharp \Psi_{n} & \leq \sharp\left\{\left(\mathbf{k}, \bar{E}, m_{n}\right), F_{n}^{\mathbf{k}, \bar{E}, m_{n}} \neq \emptyset\right\} \times \sup _{\mathbf{k}, \bar{E}, m_{n}} \sharp \Theta_{n}\left(\mathbf{k}, \bar{E}, m_{n}\right), \\
& \leq n e^{2\left(n-\sharp E_{n}^{M}\right) A_{f} H\left(A_{f}\right)} 3^{n(1 / q+1 / M)} e^{n H(1 / M)} \sup _{\mathbf{k}, \bar{E}, m_{n}} \sharp \Theta_{n}\left(\mathbf{k}, \bar{E}, m_{n}\right), \text { by Lemma 10, } \\
& \leq n e^{2\left(n-\sharp E_{n}^{M}\right) A_{f} H\left(A_{f}\right)} 3^{n(1 / q+1 / M)} e^{n H(1 / M)} \max \left(1,\|d f\|_{\infty}\right)^{\sharp \bar{E}} \prod_{j \leq m} C_{r} e^{\frac{k_{a_{j}-k_{a_{j}}^{\prime}}^{r-1}}{}} \text {, by Lemma } 11 .
\end{aligned}
$$

Then we decompose the product into four terms :

- $\sum_{i, m_{n}>a_{i} \notin E_{n}^{M}} \frac{k_{a_{i}}-k_{a_{i}}^{\prime}}{r-1} \leq\left(n-\sharp E_{n}^{M}\right)\left(\frac{\log ^{+}\|d f\|_{\infty}}{r}+\frac{1}{r-1}\right)$ by Lemma 12,
- $\sum_{i, m_{n} \leq a_{i}} \frac{k_{a_{i}}-k_{a_{i}}^{\prime}}{r-1} \leq\left(n-m_{n}\right) \frac{A_{f}}{r-1}$,
- $\sum_{i, a_{i} \in E_{n}^{M} \cap(c+q \mathbb{N})} \frac{k_{a_{i}}-k_{a_{i}}^{\prime}}{r-1} \leq 10 \frac{n}{q}+2 A_{f} \frac{q n}{M}+\frac{1}{r-1}\left(\int \frac{\log ^{+}\left\|d_{y} f^{q}\right\|}{q} d \zeta_{F_{n}}^{M}(y)-\int \phi d \hat{\zeta}_{F_{n}}^{M}\right)$,
- $\sum_{i, a_{i} \in E_{n}^{M} \backslash(c+q \mathbb{N})} \frac{k_{a_{i}-k_{a_{i}}^{\prime}}^{r-1}}{} \leq 2 A_{f} \frac{q n}{M}$.

By letting

$$
\begin{gathered}
B_{r}=\frac{1}{r-1}+\log C_{r} \\
\gamma_{q, M}(f):=2\left(\frac{1}{q}+\frac{1}{M}\right) \log C_{r}+H(1 / M)+\frac{10+\log 3}{q}+\frac{4 q A_{f}+\log 3}{M}, \\
\tau_{n}=\sup _{x \in \mathrm{~F}}\left(1-\frac{m_{n}(x)}{n}\right) \frac{A_{f}}{r-1}+\frac{\log (n C)}{n},
\end{gathered}
$$

we get with $C(f):=2 A_{f} H\left(A_{f}^{-1}\right)+\frac{\log ^{+}\|d f\|_{\infty}}{r}+B_{r}$:

$$
\begin{aligned}
\frac{1}{n} \log \sharp \Psi_{F_{n}} \leq & \left(1-\frac{\sharp E_{n}^{M}}{n}\right) C(f) \\
& +\left(\log 2+\frac{1}{r-1}\right)\left(\int \frac{\log ^{+}\left\|d_{x} f^{q}\right\|}{q} d \zeta_{F_{n}}^{M}(x)-\int \phi d \hat{\zeta}_{F_{n}}^{M}\right) \\
& +\gamma_{q, M}(f)+\tau_{n},
\end{aligned}
$$

This concludes the proof of Proposition 4.

References

[1] J. Brown, Ergodic theory and topological dynamics, Pure and applied mathematics, 1976.
[2] Burguet, David, SRB measure for \mathcal{C}^{∞} surface diffeomorphisms, arXiv:2111.06651
[3] Burguet, David, Existence of measures of maximal entropy for \mathcal{C}^{r} interval maps, Proc. Amer. Math. Soc. 142 (2014), p; 957-968
[4] Burguet, David, Symbolic extensions in intermediate smoothness on surfaces, Ann. Sci. Éc. Norm. Supér. (4), 45 (2012), no. 2, 337-362
[5] Burguet, David, Jumps of entropy for C^{r} interval maps, Fund. Math., 231, (2015), no.3, p.299-317.
[6] Buzzi, Jérôme and Ruette, Sylvie, Large entropy implies existence of a maximal entropy measure for interval maps, Discrete Contin. Dyn. Syst. A, 14, (2006), p.673-688,
[7] Buzzi, Jérôme, \mathcal{C}^{r} surface diffeomorphisms with no maximal entropy measure, Ergodic Theory Dynam. Systems 34, 2014, p 1770-1793.
[8] Buzzi, Jérôme, Représentation markovienne des applications réulieres de lintervalle, PhD thesis, Université Paris-Sud, Orsay, 1995.
[9] J. Buzzi, S. Crovisier, and O. Sarig, Measures of maximal entropy for surface diffeomorphisms, to appear in Annals of Math.
[10] J. Buzzi, S. Crovisier, and O. Sarig, Continuity properties of Lyapunov exponents for surface diffeomorphisms, arXiv:2103.02400.
[11] J. Buzzi, S. Crovisier, and O. Sarig, In preparation.
[12] T. Downarowicz, Entropy in dynamical systems, New Mathematical Monographs, 18. Cambridge University Press, Cambridge, 2011.
[13] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesins entropy formula, Ann. of Math., 122(1985), 505-539.
[14] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathmatiques de lIHES,51(1980),137-174.
[15] S. Newhouse. Continuity properties of entropy, Ann. of Math. (2), 129(2):215235, 1989.
[16] Y. Pesin and L. Barreira, Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series, v. 23, AMS, Providence, 2001
[17] Pollicott, Mark, Lectures on ergodic theory and Pesin theory on compact manifolds, London Mathematical Society Lecture Note Series (180) Cambridge University Press (1993).
[18] Yosef Yomdin, Volume growth and entropy, Israel J. Math., 57(3), p. 285-300, 1987.
Sorbonne Universite, LPSM, 75005 Paris, France
E-mail address: david.burguet@upmc.fr

[^0]: Date: September 2022.
 2010 Mathematics Subject Classification. 37 A35, 37C40, 37 D25.

[^1]: ${ }^{*}$ We refer to [16] for background on Lyapunov exponents and Pesin theory.
 ${ }^{\dagger}$ This follows from the upper semi-continuity of the entropy function h on the set of f-invariant probability measures for a \mathcal{C}^{∞} diffeomorphism f (in any dimension), which was first proved by Newhouse in [15].

[^2]: ${ }^{\ddagger}$ In the proof of the Main Theorem we will take $\iota=\iota\left(\nu_{k}\right) \xrightarrow{k} 0$ for the converging sequence of ergodic measures $\left(\nu_{k}\right)_{k}$.

[^3]: ${ }^{\text {ब}}$ Although these constants may differ at each step, they are all denoted by C_{r}.

