Entropy of physical measures for \mathcal{C}^∞ systems

David Burguet

Paris, November 26, 2019

X a Borel space and $f : X \bigcirc$ measurable,

 $\pi: V \to X$ a measurable vector fiber bundle over X equipped with a measurable Riemannian metric $\|\cdot\|_x$ on each fiber $V_x := \pi^{-1}x$, $F: V \circlearrowleft$ a measurable vector bundle morphism with $\pi \circ F = f \circ \pi$.

Definition (Pointwise Lyapunov exponent)

For $x \in X$ and $v \in V_x$ we let

$$\chi(x,v) := \limsup_{n \to +\infty} \frac{1}{n} \log \|F^n(v)\|_{f^{n_X}}.$$

For a fixed x, the set $\{v, \chi(x, v) \leq \lambda\}$ is a vector subspace nondecreasing in $\lambda \in \mathbb{R} \cup \{\pm \infty\}$.

Definition (Lyapunov flag)

There exist

•
$$r = r(x) \in \mathbb{N} \setminus \{0\}$$
,

• vector spaces $V_x = V_1(x) \supsetneq \cdots \supsetneq V_r(x) \neq 0$,

•
$$+\infty \ge \beta_1(x) \ge \cdots \beta_r(x) \ge -\infty$$

s.t. $\forall v \in V_i(x) \setminus V_{i+1}(x), \ \chi(x,v) = \beta_i(x).$

The maps r, β_i, V_i are measurable. Moreover r and β_i are f-invariant.

Let us denote by $\chi_j(x) \in \{\beta_i(x), i = 1, \dots, r\}$ for $j = 1, \dots, \dim(V)$ the Lyapunov exponents at x counted nonincreasingly with multiplicity, i.e.

$$\sharp \{j, \ \chi_j = \beta_i\} = \dim(V_i) - \dim(V_{i+1}).$$

 χ^k the top Lyapunov exponent of $\Lambda^k F : \Lambda^k V \circlearrowleft$, $\chi_{\Lambda} = \max_k \chi^k$ of $\Lambda F : \Lambda V = \bigoplus_k \Lambda^k V \circlearrowright$.

Definition

x is said Lyapunov regular when $\chi^k(x) = \sum_{j=1}^k \chi_j(x)$ for all k.

By Oseledets theorem the set of Lyapunov regular points has full measure for any *f*-invariant probability measure when $\int \log^+ \||F_x|| d\mu(x) < +\infty.$

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のへの

 χ^k the top Lyapunov exponent of $\Lambda^k F : \Lambda^k V \circlearrowleft$, $\chi_{\Lambda} = \max_k \chi^k$ of $\Lambda F : \Lambda V = \bigoplus_k \Lambda^k V \circlearrowright$.

Definition

x is said Lyapunov regular when
$$\chi^k(x) = \sum_{j=1}^k \chi_j(x)$$
 for all k.

By Oseledets theorem the set of Lyapunov regular points has full measure for any *f*-invariant probability measure when $\int \log^+ \||F_x|| d\mu(x) < +\infty.$

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のへの

Remark :
$$\chi_{\Lambda}^{+}(x) = \sum_{j} \chi_{j}^{+}(x)$$
 for x Lyapunov regular.

(X, d) compact metric, $f : X \circ$ continuous, $(\mathcal{M}, \mathfrak{d})$ compact set of *f*-invariant probas, \mathcal{M}_e the subset of ergodic measures.

Definition

For $x \in X$, we let $p\omega(x)$ be the compact subset of \mathcal{M} consisting of accumulation points of the sequence of empirical measures

$$(\mu_n^{\mathsf{x}})_n := \left(\frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^k \mathsf{x}}\right)_{n \in \mathbb{N}}$$

(X, d) compact metric, $f : X \circ$ continuous, $(\mathcal{M}, \mathfrak{d})$ compact set of *f*-invariant probas, \mathcal{M}_e the subset of ergodic measures.

Definition

For $x \in X$, we let $p\omega(x)$ be the compact subset of \mathcal{M} consisting of accumulation points of the sequence of empirical measures

$$(\mu_n^{\mathsf{x}})_n := \left(\frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^k \mathsf{x}}\right)_{n \in \mathbb{N}}$$

 $(\mathcal{KM}, \mathfrak{d}^{Hau})$ compact set of nonempty closed subsets of \mathcal{M} . <u>Remark</u> : $p\omega : x \mapsto p\omega(x)$ from X to \mathcal{KM} is Borel measurable. $F: V \bigcirc$ a **continuous** Riemannian bundle morphism over $f: X \oslash$.

$$\forall x \in X \, \forall p \in \mathbb{N}, \quad \lambda_p(x) := \limsup_n \frac{1}{n} \sum_{l=0}^{n-1} \log^+ |||F^p|||_{f'x}$$

The sequence $(\lambda_p(x))_p$ being subadditive, we may define the *empirical exponent* $\lambda(x)$ *at x as*

$$\lambda(x) := \lim_p \frac{\lambda_p(x)}{p} \ge \chi_1^+(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

6/27

 $F: V \bigcirc$ a **continuous** Riemannian bundle morphism over $f: X \oslash$.

$$\forall x \in X \, \forall p \in \mathbb{N}, \quad \lambda_p(x) := \limsup_n \frac{1}{n} \sum_{l=0}^{n-1} \log^+ |||F^p|||_{f'x}$$

The sequence $(\lambda_p(x))_p$ being subadditive, we may define the *empirical exponent* $\lambda(x)$ *at x as*

$$\lambda(x) := \lim_{p} \frac{\lambda_{p}(x)}{p} \ge \chi_{1}^{+}(x).$$

Lemma

$$\lambda(x) = \max_{\mu \in p\omega(x)} \int \chi_1^+ \, d\mu.$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ●

 λ_{Λ} the empirical exponent of $\Lambda F : \Lambda V = \bigoplus_k \Lambda^k V \circlearrowleft$

Definition

x is said $p\omega$ -regular when $\lambda_{\Lambda}(x) = \chi_{\Lambda}^{+}(x)$.

 λ_{Λ} the empirical exponent of $\Lambda F : \Lambda V = \bigoplus_k \Lambda^k V \circlearrowleft$

Definition x is said $p\omega$ -regular when $\lambda_{\Lambda}(x) = \chi_{\Lambda}^+(x)$.

The set of $p\omega$ -regular points have full μ -measure for any $\mu \in \mathcal{M}_e$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 λ_{Λ} the empirical exponent of $\Lambda F : \Lambda V = \bigoplus_k \Lambda^k V \circlearrowleft$

Definition x is said $p\omega$ -regular when $\lambda_{\Lambda}(x) = \chi^+_{\Lambda}(x)$.

The set of $p\omega$ -regular points have full μ -measure for any $\mu \in \mathcal{M}_e$.

Any point in the bassin of a hyperbolic attractor is $p\omega$ -regular w.r.t. the derivative cocycle.

Statements

M compact manifold, $f : M \bigcirc a C^1$ map, Exponent w.r.t. derivative cocycle df on TM.

Theorem (Ruelle)

 $f \mathcal{C}^1$,

$$\forall \mu \in \mathcal{M}, \ h(\mu) \leq \int \chi_{\Lambda}^+ d\mu.$$

Statements

M compact manifold, $f : M \bigcirc a C^1$ map, Exponent w.r.t. derivative cocycle *df* on *TM*.

Theorem (Ruelle)

 $f \mathcal{C}^1$,

$$\forall \mu \in \mathcal{M}, \ h(\mu) \leq \int \chi_{\Lambda}^+ \, d\mu.$$

For a \mathcal{C}^∞ system the converse inequality holds physically :

Main Theorem

f \mathcal{C}^{∞} ,

for Leb a.e.
$$x$$
, $\max_{\mu \in p\omega(x)} h(\mu) \ge \chi^+_{\Lambda}(x)$.

Statements

M compact manifold, $f : M \circlearrowleft a C^1$ map, Exponent w.r.t. derivative cocycle *df* on *TM*.

Theorem (Ruelle)

 $f \mathcal{C}^1$,

$$\forall \mu \in \mathcal{M}, \ h(\mu) \leq \int \chi_{\Lambda}^+ \, d\mu.$$

For a \mathcal{C}^∞ system the converse inequality holds physically :

Main Theorem

f \mathcal{C}^{∞} ,

for Leb a.e.
$$x$$
, $\max_{\mu \in p\omega(x)} h(\mu) \ge \chi^+_{\Lambda}(x)$.

<u>Remark</u> : Ruelle's inequality may be restated for $f C^1$ as

$$\forall x \in M, \sup_{\mu \in p\omega(x)} h(\mu) \leq \lambda_{\Lambda}(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem

There are C^r counterexamples for any finite $r \geq 1$.

Theorem

There are C^r counterexamples for any finite $r \geq 1$.

However we have for $f C^r$ with r > 1,

for Leb a.e.
$$x$$
, $\sup_{\mu \in p\omega(x)} h(\mu) \ge \chi^+_{\Lambda}(x) + \frac{\lambda_{\Lambda}(x) - \chi^+_{\lambda}(x)}{r-1} + \frac{d}{r}\lambda(x).$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

Theorem

There are C^r counterexamples for any finite $r \geq 1$.

However we have for $f C^r$ with r > 1,

for Leb a.e.
$$x$$
, $\sup_{\mu \in p\omega(x)} h(\mu) \ge \chi^+_{\Lambda}(x) + \frac{\lambda_{\Lambda}(x) - \chi^+_{\lambda}(x)}{r-1} + \frac{d}{r}\lambda(x).$

We conjecture

for Leb a.e.
$$x$$
, $\sup_{\mu \in p\omega(x)} h(\mu) \ge \chi_{\Lambda}^+(x) + \frac{\lambda_{\Lambda}(x) - \chi_{\lambda}^+(x)}{r-1}$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

$$B_{\mu} := \{x, \ p\omega(x) = \{\mu\}\}$$
 basin of μ ,
 μ is physical when $\text{Leb}(B_{\mu}) > 0$.

$$B_{\mu} := \{x, p\omega(x) = \{\mu\}\}$$
 basin of μ ,
 μ is physical when $\text{Leb}(B_{\mu}) > 0$.

Corollary

Let μ be a physical measure of a \mathcal{C}^{∞} system. Then

 $h(\mu) \geq \overline{\chi_{\Lambda}|_{B_{\mu}}},$

with $\overline{\chi_{\Lambda}|_{B_{\mu}}}$ the essential supremum of χ_{Λ} on B_{μ} .

$$B_{\mu} := \{x, p\omega(x) = \{\mu\}\}$$
 basin of μ ,
 μ is physical when $\text{Leb}(B_{\mu}) > 0$.

Corollary

Let μ be a physical measure of a \mathcal{C}^{∞} system. Then

 $h(\mu) \geq \overline{\chi_{\Lambda}|_{B_{\mu}}},$

with $\overline{\chi_{\Lambda}|_{B_{\mu}}}$ the essential supremum of χ_{Λ} on B_{μ} .

The Corollary does not hold true anymore for $f C^r$ with $r < +\infty$.

For the C^{∞} Bowen eight's attractor, we get $\chi_1(x) = 0$ for Leb-a.e. x in the eyes.

 $f: M \circlearrowleft a \mathcal{C}^{1} \text{ map,} \\ \mu \text{ is SRB when } h(\mu) = \int \chi_{\Lambda}^{+}(x) d\mu(x) > 0.$ For $\mu \in \mathcal{M}_{e}$, we let $B'_{\mu} := \left\{ x \in B_{\mu}, \ \forall j \ \chi_{j}(x) = \int \chi_{j} d\mu \right\}.$

<u>Remark</u> : any point in B'_{μ} is Lyapunov regular and $p\omega$ -regular.

 $f: M \circlearrowleft a \mathcal{C}^{1} \text{ map,} \\ \mu \text{ is SRB when } h(\mu) = \int \chi_{\Lambda}^{+}(x) d\mu(x) > 0.$ For $\mu \in \mathcal{M}_{e}$, we let $B'_{\mu} := \left\{ x \in B_{\mu}, \ \forall j \ \chi_{j}(x) = \int \chi_{j} d\mu \right\}.$

<u>Remark</u> : any point in B'_{μ} is Lyapunov regular and $p\omega$ -regular.

Theorem (Tsujii)

Let $f : M \bigcirc$ be a C^{1+} diffeo. Assume the union of B'_{μ} over all ergodic hyp. measures of saddle type μ has positive Lebesgue measure. Then there exists an ergodic hyp. SRB measure.

 $f: M \circlearrowleft a \mathcal{C}^{1} \operatorname{map},$ $\mu \text{ is SRB when } h(\mu) = \int \chi_{\Lambda}^{+}(x) d\mu(x) > 0.$ For $\mu \in \mathcal{M}_{e}$, we let $B'_{\mu} := \left\{ x \in B_{\mu}, \forall j \ \chi_{j}(x) = \int \chi_{j} d\mu \right\}.$

<u>Remark</u> : any point in B'_{μ} is Lyapunov regular and $p\omega$ -regular.

Theorem (Tsujii)

Let $f : M \bigcirc$ be a C^{1+} diffeo. Assume the union of B'_{μ} over all ergodic hyp. measures of saddle type μ has positive Lebesgue measure. Then there exists an ergodic hyp. SRB measure.

Corollary

Let $f : M \oslash$ be a C^{∞} map. Assume the set of points $x p\omega$ -regular w.r.t. Λ df with $\chi_{\Lambda}(x) > 0$ has positive Lebesgue measure. Then there exists a (ergodic) SRB measure.

For surface diffeos the converse also holds true. The Corollary for f \mathcal{C}^{1+} would follow from the above Conjecture.

Bounded distorsion

 $f: M \circlearrowleft \mathcal{C}^1$,

Definition

For $n \in \mathbb{N}$ a \mathcal{C}^1 disc D_n is said to have n-bounded distorsion when

$$\forall x, y \in D_n, \ \frac{|\operatorname{Jac}(d_x f^n|_{T_x D_n})|}{|\operatorname{Jac}(d_y f^n|_{T_y D_n})|} < 2.$$

For $x \in M$, $n \in \mathbb{N}$, $\epsilon > 0$ and a partition P of M, let $B_n(x, \epsilon)$ the dynamical ball

$$B_n(x,\epsilon) := \{ y \in M, \ d(f^k x, f^k y) < \epsilon \ \forall 0 \le k < n \}$$

and let P_x^n the element of $P^n = \bigvee_{k=0}^{n-1} f^{-k}P$ containing $x \in M$. When diam $(P) < \epsilon$ we have $P_x^n \subset B_n(x, \epsilon)$ for all x.

Theorem (Folklore)

Let f be C^1 uniformly hyperbolic and D a local unstable disc. There exists a scale $\epsilon > 0$ such that for all n and for all $x \in X$ there is an unstable subdisc of D_n^x of D satisfying :

イロト 不得 とうせい かけいしゅ

•
$$B_n(x,\epsilon) \cap D \subset D_n^x$$
,

•
$$\operatorname{vol}(f^n D_n^x) < \operatorname{vol}(D)/2$$

Theorem (Folklore)

Let f be C^{1+} uniformly hyperbolic and D a local unstable disc. There exists a scale $\epsilon > 0$ such that for all n and for all $x \in X$ there is an unstable subdisc of D_n^x of D satisfying :

•
$$B_n(x,\epsilon) \cap D \subset D_n^x$$
,

•
$$\operatorname{vol}(f^n D_n^x) < \operatorname{vol}(D)/2$$

• D_n^{\times} has n-bounded distorsion.

Theorem (Folklore)

Let f be C^{1+} uniformly hyperbolic and D a local unstable disc. There exists a scale $\epsilon > 0$ such that for all n and for all $x \in X$ there is an unstable subdisc of D_n^x of D satisfying :

•
$$B_n(x,\epsilon) \cap D \subset D_n^x$$
,

•
$$\operatorname{vol}(f^n D_n^x) < \operatorname{vol}(D)/2$$

• D_n^{\times} has n-bounded distorsion.

Proof of bounded distorsion property :

• there is $0 < \lambda < 1$ with $\operatorname{diam}(D_n^{\times}) < \epsilon \lambda^n$,

•
$$y \mapsto \operatorname{Jac}(d_y f|_{E_u})$$
 is Hölder.

Building SRB measures for a \mathcal{C}^{1+} uniformly hyperbolic system f :

Building SRB measures for a C^{1+} uniformly hyperbolic system f :

Subscript{Expanding disc : D a local unstable disc, $m = \text{Leb}_D$ probative volume on D,

Building SRB measures for a \mathcal{C}^{1+} uniformly hyperbolic system f :

- Subscript{Expanding disc : D a local unstable disc, $m = \text{Leb}_D$ probative volume on D,
- Bounded distortion : P be a partition with diam(P) < ε, then for all x we have</p>

$$egin{aligned} & m(\mathcal{P}_x^n) & \leq & rac{ ext{vol}(D_n^{ imes})}{ ext{vol}(D)}, \ & \leq & rac{2 ext{vol}(f^n D_n^{ imes})}{ ext{vol}(D) \cdot ext{Jac}(d_x f^n|_{E_u})}, \ & \leq & rac{1}{ ext{Jac}(d_x f^n|_{E_u})}. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Building SRB measures for a \mathcal{C}^{1+} uniformly hyperbolic system f :

- Subscript{Expanding disc : D a local unstable disc, $m = \text{Leb}_D$ probative volume on D,
- Bounded distortion : P be a partition with diam(P) < ε, then for all x we have</p>

$$egin{aligned} & m(P_x^n) & \leq & rac{ ext{vol}(D_n^{ imes})}{ ext{vol}(D)}, \ & \leq & rac{2 ext{vol}(f^n D_n^{ imes})}{ ext{vol}(D) \cdot ext{Jac}(d_x f^n|_{E_u})}, \ & \leq & rac{1}{ ext{Jac}(d_x f^n|_{E_u})}. \end{aligned}$$

Solution The product of the product

$$h(\mu, P) \geq \limsup_{k} -\frac{1}{n_k} \int \log m(P_x^{n_k}) dm(x).$$

We get

$$\begin{aligned} -\frac{1}{n_k}\int \log m(P_x^{n_k})\,dm(x) &\geq \frac{1}{n_k}\int \log \operatorname{Jac}(df^{n_k}|_{E_u})\,dm, \\ & || \\ &\geq \int \log \operatorname{Jac}(df|_{E_u})d\mu_{n_k}, \end{aligned}$$

We get

then by letting $k \to +\infty$

$$\limsup_{k} -\frac{1}{n_{k}} \int \log m(P_{x}^{n_{k}}) dm(x) \geq \int \log \operatorname{Jac}(df|_{E_{u}}) d\mu,$$

$$\wedge | \qquad \qquad ||$$

$$h(\mu) \geq \int \chi_{\Lambda}^{+} d\mu.$$

15/27

Reparametrization Lemma (Yomdin,

Let $f : M \circlearrowleft be a C^{\infty}$ map and $D a C^{\infty}$ k-disc. For all $\gamma > 0$, there exists a scale $\epsilon > 0$ such that for all n large enough and for all $x \in X$ there is a finite family \mathcal{F}_n^{x} of C^{∞} k-subdiscs of D with $\sharp \mathcal{F}_n^{x} \leq e^{\gamma n}$ satisfying :

<ロ> (四) (四) (三) (三) (三) (三)

- $B_n(x,\epsilon) \cap D \subset \bigcup_{D_n \in \mathcal{F}_n} D_n$,
- $\operatorname{vol}(f^n D_n) < \operatorname{vol}(D)/2$ for any $D_n \in \mathcal{F}_n^{\times}$,

Reparametrization Lemma (Yomdin, B.)

Let $f : M \bigcirc$ be a \mathcal{C}^{∞} diffemorphism and $D \in \mathcal{C}^{\infty}$ k-disc. For all $\gamma > 0$, there exists a scale $\epsilon > 0$ such that for all n large enough and for all $x \in X$ there is a finite family \mathcal{F}_n^{\times} of \mathcal{C}^{∞} k-subdiscs of D with $\sharp \mathcal{F}_n^{\times} \leq e^{\gamma n}$ satisfying :

- $B_n(x,\epsilon) \cap D \subset \bigcup_{D_n \in \mathcal{F}_n} D_n$,
- $\operatorname{vol}(f^n D_n) < \operatorname{vol}(D)/2$ for any $D_n \in \mathcal{F}_n^{\times}$,
- D_n has n-bounded distorsion for any $D_n \in \mathcal{F}_n^x$.

Theorem (Yomdin)

Shub's entropy conjecture holds true for C^{∞} systems.

Theorem (Yomdin)

Shub's entropy conjecture holds true for \mathcal{C}^{∞} systems.

Theorem (Newhouse)

 $f\in\mathcal{C}^\infty$,

$$\forall \mu \in \mathcal{M}, \ \limsup_{\nu \to \mu} h(\nu) \leq h(\mu).$$

Theorem (Yomdin)

Shub's entropy conjecture holds true for \mathcal{C}^{∞} systems.

Theorem (Newhouse)

 $f \in \mathcal{C}^{\infty}$,

$$\forall \mu \in \mathcal{M}, \ \limsup_{\nu \to \mu} h(\nu) \leq h(\mu).$$

Theorem (Misurewicz, Downarowicz-Newhouse, Buzzi)

There are counterexamples for any finite $r \ge 1$.

However we have for $f C^r$

$$\forall \mu \in \mathcal{M}, \ \limsup_{\nu \to \mu} h(\nu) \leq h(\mu) + \frac{\dim(M)}{r} \int \chi_1^+ d\mu.$$

Essential domain and image

X, Y metric spaces, Y separable, $\phi: X \rightarrow Y$ Borel measurable, *m* Borel measure on X.

Definition (Essential image/domain)

$$\overline{\mathrm{Im}}_{\phi}(m) := \{ y \in Y, \ \forall U \in \mathcal{V}(y) \ m(\phi^{-1}U) > 0 \}$$

 $\overline{\mathrm{Dom}}_{\phi}(m) := \{ x \in X, \ \phi(x) \in \overline{\mathrm{Im}}_{\phi}(m) \}.$

<ロ> (四) (四) (三) (三) (三)

Essential domain and image

X, Y metric spaces, Y separable, $\phi: X \rightarrow Y$ Borel measurable, m Borel measure on X.

Definition (Essential image/domain)

$$\overline{\mathrm{Im}}_{\phi}(m) := \{ y \in Y, \ \forall U \in \mathcal{V}(y) \ m(\phi^{-1}U) > 0 \}$$

 $\overline{\mathrm{Dom}}_{\phi}(m) := \{ x \in X, \ \phi(x) \in \overline{\mathrm{Im}}_{\phi}(m) \}.$

The essential image is the smallest closed subset K of Y for which $\phi(x) \in K$ for *m*-a.e. x. For $Y = \mathbb{R}$ the essential supremum is $\overline{\phi} = \sup(\overline{\mathrm{Im}}_{\phi}(m))$. The essential domain has full *m*-measure.

Essential domain and image

X, Y metric spaces, Y separable, $\phi: X \rightarrow Y$ Borel measurable, m Borel measure on X.

Definition (Essential image/domain)

$$\overline{\mathrm{Im}}_\phi(m) := \{ y \in Y, \ \forall U \in \mathcal{V}(y) \ m(\phi^{-1}U) > 0 \}$$

 $\overline{\mathrm{Dom}}_\phi(m) := \{ x \in X, \ \phi(x) \in \overline{\mathrm{Im}}_\phi(m) \}.$

The essential image is the smallest closed subset K of Y for which $\phi(x) \in K$ for *m*-a.e. *x*. For $Y = \mathbb{R}$ the essential supremum is $\overline{\phi} = \sup(\overline{\mathrm{Im}}_{\phi}(m))$. The essential domain has full *m*-measure.

In the following, for $f: X \circlearrowleft$ continuous we consider $\phi = p\omega: X \to \mathcal{KM}$. When X = M is a Riemannian manifold and m the Lebesgue measure then $\overline{\mathrm{Im}}_{p\omega}(m)$ is the set of physical-like measures as defined by Enrich and Catsigeras.

Key Proposition

Fix
$$a < \overline{\chi^k}$$
 and let $\operatorname{Leb}_a = \operatorname{Leb}|_{\{\chi^k > a\}}$.

Proposition

For $x \in \overline{\mathrm{Dom}}_{p\omega}(\mathrm{Leb}_{a})$, there exists $\mu \in p\omega(x)$ s.t.

 $h(\mu) \geq a.$

Key Proposition

Fix
$$a < \overline{\chi^k}$$
 and let $\operatorname{Leb}_a = \operatorname{Leb}|_{\{\chi^k > a\}}$.

Proposition

For
$$x \in \overline{\text{Dom}}_{p\omega}(\text{Leb}_a)$$
, there exists $\mu \in p\omega(x)$ s.t.

 $h(\mu) \geq a.$

<u>Proof of Main Theorem</u>: For $(a_l)_{l \in \mathbb{N}}$ dense in \mathbb{R}^+ we let

$$F_{l} = \{\chi^{k} \leq a_{l}\} \cup \overline{\mathrm{Dom}}_{p\omega}(\mathrm{Leb}_{a_{l}}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Then Leb $(\bigcap_{I} F_{I}) = 1$. Moreover for $x \in \bigcap_{I} F_{I}$ and for a_{I} with $\chi^{k}(x) > a_{I}$, there is $\mu_{I} \in p\omega(x)$ with $h(\mu_{I}) \ge a_{I}$.

Key Proposition

Fix
$$a < \overline{\chi^k}$$
 and let $\operatorname{Leb}_a = \operatorname{Leb}|_{\{\chi^k > a\}}$.

Proposition

For
$$x \in \overline{\text{Dom}}_{p\omega}(\text{Leb}_a)$$
, there exists $\mu \in p\omega(x)$ s.t.

 $h(\mu) \geq a.$

<u>Proof of Main Theorem</u>: For $(a_l)_{l \in \mathbb{N}}$ dense in \mathbb{R}^+ we let

$$F_{l} = \{\chi^{k} \leq a_{l}\} \cup \overline{\mathrm{Dom}}_{p\omega}(\mathrm{Leb}_{a_{l}}).$$

Then $\operatorname{Leb}(\bigcap_{l} F_{l}) = 1$. Moreover for $x \in \bigcap_{l} F_{l}$ and for a_{l} with $\chi^{k}(x) > a_{l}$, there is $\mu_{l} \in p\omega(x)$ with $h(\mu_{l}) \ge a_{l}$. By u.s.c. of the entropy, any accumulation point $\mu \in p\omega(x)$ of $(\mu_{l_{n}})_{n}$ with $a_{l_{n}} \xrightarrow{\nearrow} \chi^{k}(x)$ satisfies

$$h(\mu) \geq \limsup_{n} h(\mu_{I_n}) \geq \lim_{n} a_{I_n} = \chi^k(x).$$

 $x_* \in \overline{\mathrm{Dom}}_{p\omega}(\mathrm{Leb}_a)$ fixed,

• NU Expanding disc : $D \neq C^{\infty}$ embedded k-disc and $E \subset D$ with $\operatorname{Leb}_D(E) > 0$ s.t. for any $y \in E$

(日)、(四)、(E)、(E)、(E)

• $\chi^{k}(y, \iota(T_{y}D)) > a$ with ι the Plücker embedding,

•
$$\mathfrak{d}^{Hau}(p\omega(y),p\omega(x_*))\ll 1.$$

 $x_* \in \overline{\mathrm{Dom}}_{\rho\omega}(\mathrm{Leb}_a)$ fixed,

- NU Expanding disc : $D ext{ a } C^{\infty}$ embedded k-disc and $E \subset D$ with $ext{Leb}_D(E) > 0$ s.t. for any $y \in E$
 - $\chi_{\mu}^{k}(y, \iota(T_{y}D)) > a$ with ι the Plücker embedding,
 - $\partial^{Hau}(p\omega(y),p\omega(x_*)) \ll 1.$

2 Borel-Cantelli argument : for $n \in J \subset \mathbb{N}$ with $\sharp J = \infty$, subset

 E_n of E with $\frac{|\log \operatorname{Leb}_D(E_n)|}{n} \ll 1$ s.t. for any $y \in E_n$

•
$$|\operatorname{Jac}(d_y f^n|_{T_y D})| \ge e^{na}$$

•
$$\mathfrak{d}(\mu_n^y, p\omega(x_*)) \ll 1$$
,

 m_n proba induced on E_n by Leb_D ,

- $x_* \in \overline{\mathrm{Dom}}_{\rho\omega}(\mathrm{Leb}_a)$ fixed,
 - NU Expanding disc : $D ext{ a } C^{\infty}$ embedded k-disc and $E \subset D$ with $ext{Leb}_D(E) > 0$ s.t. for any $y \in E$
 - $\chi_{\mu}^{k}(y, \iota(T_{y}D)) > a$ with ι the Plücker embedding,
 - $\mathfrak{d}^{Hau}(p\omega(y),p\omega(x_*)) \ll 1.$

2 Borel-Cantelli argument : for $n \in J \subset \mathbb{N}$ with $\sharp J = \infty$, subset

 E_n of E with $\frac{|\log \operatorname{Leb}_D(E_n)|}{n} \ll 1$ s.t. for any $y \in E_n$

•
$$|\operatorname{Jac}(d_y f^n|_{T_y D})| \ge e^{na}$$
,

•
$$\mathfrak{d}(\mu_n^y, p\omega(x_*)) \ll 1$$
,

 m_n proba induced on E_n by Leb_D,

Sounded distortion for $Jac(df|_{TD})$: *P* partition with $\overline{diam(P)} < \epsilon$ for $\gamma \ll 1$ as in Reparametrization Lemma,

- $x_* \in \overline{\mathrm{Dom}}_{p\omega}(\mathrm{Leb}_a)$ fixed,
 - NU Expanding disc : $D \neq C^{\infty}$ embedded k-disc and $E \subset D$ with $\operatorname{Leb}_D(E) > 0$ s.t. for any $y \in E$
 - $\chi_{\mu}^{k}(y, \iota(T_{y}D)) > a$ with ι the Plücker embedding,
 - $\mathfrak{d}^{Hau}(p\omega(y),p\omega(x_*)) \ll 1.$

2 Borel-Cantelli argument : for $n \in J \subset \mathbb{N}$ with $\sharp J = \infty$, subset

 E_n of E with $\frac{|\log \operatorname{Leb}_D(E_n)|}{n} \ll 1$ s.t. for any $y \in E_n$

•
$$|\operatorname{Jac}(d_y f^n|_{T_y D})| \ge e^{na}$$
,

•
$$\mathfrak{d}(\mu_n^y, p\omega(x_*)) \ll 1$$
,

 m_n proba induced on E_n by Leb_D ,

Sounded distortion for $Jac(df|_{TD})$: *P* partition with $\overline{diam(P)} < \epsilon$ for $\gamma \ll 1$ as in Reparametrization Lemma,

• Entropy computation : for $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f^k m_n$ and $\mu = \lim_k \mu_{n_k}$ with $\mu(\partial P) = 0$, we have $\mathfrak{d}(\mu, p\omega(x_*)) \ll 1$ and $h(\mu, P) \gtrsim a$.

We conclude by u.s.c. of the metric entropy on \mathcal{M}_{-}

$$x_* \in \overline{\mathrm{Dom}}_{p\omega}(\mathrm{Leb}_a)$$
, i.e. $p\omega(x_*) \in \overline{\mathrm{Im}}_{p\omega}(\mathrm{Leb}_a)$, thus $\forall \eta > 0$,

$$E' = \{y, \ \chi^k(y) > a \text{ and } \vartheta^{Hau}(p\omega(y), p\omega(x_*)) < \eta\}$$

satisfies Leb(E') > 0. By reducing E' the Lyapunov space V_2 w.r.t. $\Lambda^k df$ is continuous on E'.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$x_* \in \overline{\mathrm{Dom}}_{p\omega}(\mathrm{Leb}_a)$$
, i.e. $p\omega(x_*) \in \overline{\mathrm{Im}}_{p\omega}(\mathrm{Leb}_a)$, thus $\forall \eta > 0$,

$$E' = \{y, \ \chi^k(y) > a \text{ and } \vartheta^{Hau}(p\omega(y), p\omega(x_*)) < \eta\}$$

satisfies Leb(E') > 0. By reducing E' the Lyapunov space V_2 w.r.t. $\Lambda^k df$ is continuous on E'.

Let z be a Lebesgue density point of E' and $U \in \mathcal{V}(z)$ s.t. $\forall y \in U \cap E', \ \iota(H_y) \notin V_2(y)$ for some *constant* k-distribution H.

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のへの

$$x_* \in \overline{\mathrm{Dom}}_{p\omega}(\mathrm{Leb}_a)$$
, i.e. $p\omega(x_*) \in \overline{\mathrm{Im}}_{p\omega}(\mathrm{Leb}_a)$, thus $\forall \eta > 0$,

$$E' = \{y, \ \chi^k(y) > a \text{ and } \vartheta^{Hau}(p\omega(y), p\omega(x_*)) < \eta\}$$

satisfies Leb(E') > 0. By reducing E' the Lyapunov space V_2 w.r.t. $\Lambda^k df$ is continuous on E'.

Let z be a Lebesgue density point of E' and $U \in \mathcal{V}(z)$ s.t. $\forall y \in U \cap E', \ \iota(H_y) \notin V_2(y)$ for some *constant* k-distribution H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Since $\text{Leb}(U \cap E') > 0$ one may take by Fubini $D \subset H_y$ with $\text{Leb}_D(E') > 0$ for some $y \in U \cap E'$. Put $E = E' \cap D$.

Take

$$E_n := \{ y \in E, \ |\operatorname{Jac}(d_y f^n|_{\mathcal{T}_y D})| \ge e^{na} \text{ and } \mathfrak{d}(\mu_n^y, p\omega(x_*)) \le \eta \}.$$

For $\gamma > 0$ small error term, let us show that

 $\exists J \subset \mathbb{N}$ with $|J| = +\infty$ s.t.

 $\operatorname{Leb}_D(E_n) > e^{-n\gamma}.$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

Take

$$E_n := \{ y \in E, \ |\operatorname{Jac}(d_y f^n|_{\mathcal{T}_y D})| \ge e^{na} \text{ and } \mathfrak{d}(\mu_n^y, p\omega(x_*)) \le \eta \}.$$

For $\gamma > 0$ small error term, let us show that

 $\exists J \subset \mathbb{N}$ with $|J| = +\infty$ s.t.

 $\operatorname{Leb}_D(E_n) > e^{-n\gamma}.$

Argue by contradiction :

 $\begin{bmatrix} \forall n \text{ large } \operatorname{Leb}_D(E_n) < e^{-n\gamma} \end{bmatrix} \\ \Rightarrow [\operatorname{Leb}_D(\limsup_n E_n) = 0.]$

(日) (日) (日) (日) (日) (日) (日) (日)

But $\limsup_{n \to \infty} E_n \supset E$ and $\operatorname{Leb}_D(E) > 0...$

 $\epsilon > 0$ given by Reparametrization Lemma w.r.t. small error term $\gamma,$

P be a finite partition with $\operatorname{diam}(P) < \epsilon$.

For all *n* large and all $x \in X$, let \mathcal{F}_n^x be a family of \mathcal{C}^∞ *k*-discs with $\sharp \mathcal{F}_n^x \leq e^{\gamma n}$ s.t.

- $P_x^n \subset B_n(x,\epsilon) \cap D \subset \bigcup_{D_n \in \mathcal{F}_n^x} D_n$,
- $\operatorname{vol}(f^n D_n) < 1$ for any $D_n \in \mathcal{F}_n^{\times}$,
- D_n has *n*-bounded distorsion for any $D_n \in \mathcal{F}_n^{\times}$.

Step 4 : Entropy computation

 m_n proba induced on E_n by Leb_D for $n \in J$,

P as above, $\mathcal{G}_n^{\times} = \{D_n \in \mathcal{F}_n^{\times}, \ D_n \cap E_n \neq \emptyset\}$ for $x \in M$.

Step 4 : Entropy computation

 m_n proba induced on E_n by Leb_D for $n \in J$, P as above, $\mathcal{G}_n^x = \{D_n \in \mathcal{F}_n^x, \ D_n \cap E_n \neq \emptyset\}$ for $x \in M$.

$$\begin{split} m_n(P_x^n) &\leq \frac{1}{\operatorname{Leb}_D(E_n)} \sum_{D_n \in \mathcal{G}_n^{\times}} \frac{\operatorname{vol}(D_n)}{\operatorname{vol}(D)}, \\ &\leq \frac{1}{\operatorname{Leb}_D(E_n)} \sum_{D_n \in \mathcal{G}_n^{\times}} \frac{2e^{-na} \operatorname{vol}(f^n D_n)}{\operatorname{vol}(D)}, \\ m_n(P_x^n) &\leq \frac{e^{-na} \sharp \mathcal{G}_n^{\times}}{\operatorname{Leb}_D(E_n)} \leq e^{-n(a-2\gamma)}. \end{split}$$

Step 4 : Entropy computation

 m_n proba induced on E_n by Leb_D for $n \in J$, P as above, $\mathcal{G}_n^x = \{D_n \in \mathcal{F}_n^x, \ D_n \cap E_n \neq \emptyset\}$ for $x \in M$.

$$egin{aligned} m_n(\mathcal{P}_x^n) &\leq & rac{1}{ ext{Leb}_D(\mathcal{E}_n)} \sum_{D_n \in \mathcal{G}_n^{ imes}} rac{ ext{vol}(D_n)}{ ext{vol}(D)}, \ &\leq & rac{1}{ ext{Leb}_D(\mathcal{E}_n)} \sum_{D_n \in \mathcal{G}_n^{ imes}} rac{2e^{-na} ext{vol}(f^nD_n)}{ ext{vol}(D)}, \ &m_n(\mathcal{P}_x^n) &\leq & rac{e^{-na} \sharp \mathcal{G}_n^{ imes}}{ ext{Leb}_D(\mathcal{E}_n)} \leq e^{-n(a-2\gamma)}. \end{aligned}$$

Therefore for $\mu = \lim_{k} \mu_{n_k}$ with $\mu(\partial P) = 0$:

$$h(\mu, P) \geq \liminf_{n \in J} -\frac{1}{n} \int \log m_n(P_x^n) dm_n(x) \gtrsim a_n$$

Theorem (Downarowicz-Newhouse)

Let f be a C^r surface diffeomorphism for $1 \le r < +\infty$ with homoclinic tangency at a saddle hyp. fixed point p.

Then there exists g arbitrarily close to f admitting a sequence of horseshoes $(H_n)_n$ with $\lim_n h_{top}(H_n) = \frac{\min_i |\chi_i(p_g)|}{r} s.t.$

Theorem (Downarowicz-Newhouse)

Let f be a C^r surface diffeomorphism for $1 \le r < +\infty$ with homoclinic tangency at a saddle hyp. fixed point p.

Then there exists g arbitrarily close to f admitting a sequence of horseshoes $(H_n)_n$ with $\lim_n h_{top}(H_n) = \frac{\min_i |\chi_i(p_g)|}{r} s.t.$

◆□> ◆□> ◆注> ◆注> □ 注

•
$$\sup_{x \in H_n} \left| \chi_1(x) - \frac{\chi_1(p_g)}{r} \right| \xrightarrow{n} 0$$
,

•
$$p\omega(H_n) \xrightarrow{n} {\delta_{p_g}},$$

•
$$HD^u(H_n) \xrightarrow{n} 1$$
.

Theorem (under preparation)

Let f be a C^r surface diffeomorphism for $1 \le r < +\infty$ with a homoclinic tangency at a dissipative saddle hyp. fixed point p.

Then there exists g arbitrarily C^r -close to f with $E \subset M$ s.t.

(日)

•
$$\forall x \in E, \chi_1(x) = \frac{\chi_1(p_g)}{r}$$
,

•
$$p\omega(E) = \{\delta_{p_g}\},\$$

Thank you for your attention !

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで