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Lyapunov exponents
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X a Borel space and f : X () measurable,
m: V — X a measurable vector fiber bundle over X equipped with
a measurable Riemannian metric || - ||x on each fiber V, := 77 1x,

F : V O a measurable vector bundle morphism with mo F = f o .

Definition (Pointwise Lyapunov exponent)

For x € X and v € V, we let

X(x,v) —|Imsur>flogHF"( ) £ox-

n—-+o0o

For a fixed x, the set {v, x(x,v) < A} is a vector subspace
nondecreasing in A € RU {£o0}.



3/27

Definition (Lyapunov flag )

There exist
e r=r(x) e N\ {0},
@ vector spaces V, = Vi(x) 2 --- 2 Vi(x) #0,
@ +00 > fi(x) > - Br(x) > —oc0
s.t. Vv € Vi(x) \ Vita(x), x(x,v) = Bi(x).

The maps r, B;, V; are measurable. Moreover r and 3; are
f-invariant.

Let us denote by x;(x) € {fi(x), i=1,---,r} for
Jj=1,---,dim(V) the Lyapunov exponents at x counted
nonincreasingly with multiplicity, i.e.

t{J, xj = Bi} = dim(V;) — dim(Vj41).
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x* the top Lyapunov exponent of AKF : AKV (9,
XA = maxg Xk of AF : AV = & AFV 0.

Definition

x is said Lyapunov regular when y*(x) = E}‘Zl Xj(x) for all k.

By Oseledets theorem the set of Lyapunov regular points has full
measure for any f-invariant probability measure when
Jlog™ IFclldp(x) < +oc.
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x* the top Lyapunov exponent of AKF : AKV (9,
XA = maxg Xk of AF : AV = & AFV 0.

Definition

x is said Lyapunov regular when y*(x) = E}‘Zl Xj(x) for all k.

By Oseledets theorem the set of Lyapunov regular points has full
measure for any f-invariant probability measure when
Jlog™* H!Fx\HdM(X) < +o0.

Remark : X/\ ZX ) for x Lyapunov regular.



Empirical exponent

(X, d) compact metric, f : X O continuous,
(M, 0) compact set of f-invariant probas,
M the subset of ergodic measures.

Definition
For x € X, we let pw(x) be the compact subset of M consisting of
accumulation points of the sequence of empirical measures

n—1
(,un)n "= (n Z(kax> c
neN

k=0
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Empirical exponent

(X, d) compact metric, f : X O continuous,
(M, 0) compact set of f-invariant probas,
M the subset of ergodic measures.

Definition

For x € X, we let pw(x) be the compact subset of M consisting of
accumulation points of the sequence of empirical measures

n—1
(,un)n "= (n Z(kax> c
neN

k=0

(KM, DH""“) compact set of nonempty closed subsets of M.

Remark : pw : x — pw(x) from X to LM is Borel measurable.
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F : V O a continuous Riemannian bundle morphism over f : X O.
n—1

_ 1
VX € XVp €N, Ap(x) = limsup /z; log™ | FP/l| 1.

The sequence ()\p(x))p being subadditive, we may define the
empirical exponent A\(x) at x as
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F : V O a continuous Riemannian bundle morphism over f : X O.
1 n—1
Vx € XVp e N, Ap(x):=limsup = Z log™ [IFPl -
n M5

The sequence ()\p(x))p being subadditive, we may define the
empirical exponent A\(x) at x as
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Ap the empirical exponent of AF : AV = @AV O

Definition

x is said pw-regular when A\\(x) = x\ (x).
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Ap the empirical exponent of AF : AV = @AV O

Definition

x is said pw-regular when A\\(x) = x\ (x).

The set of pw-regular points have full y-measure for any p € Me.

Any point in the bassin of a hyperbolic attractor is pw-regular
w.r.t. the derivative cocycle.



Statements

M compact manifold, f : M () a C! map,
Exponent w.r.t. derivative cocycle df on TM.

Theorem (Ruelle)

Y e M, h(p) < /X,T dp.
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Statements

M compact manifold, f : M & a C' map,
Exponent w.r.t. derivative cocycle df on TM.

Theorem (Ruelle)

f et
Ve M, h(u) < /XX dp.

For a C*° system the converse inequality holds physically :

Main Theorem
f C*>,

for Leb a.e. x, max h(u) > xx (x).
pEpw(x)
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Statements

M compact manifold, f : M & a C' map,
Exponent w.r.t. derivative cocycle df on TM.

Theorem (Ruelle)

f et
Ve M, h(u) < /XX dp.

For a C*° system the converse inequality holds physically :

Main Theorem
f C*>,

for Leb a.e. x, max h(u) > xx (x).
pEpw(x)

Remark : Ruelle’s inequality may be restated for f C* as

Vx e M, sup h(p) < An(x).
HEPpw(x)
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There are C" counterexamples for any finite r > 1. I
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There are C" counterexamples for any finite r > 1. l

However we have for f C" with r > 1,

ME) =), d

for Leb a.e. x, sup h(p) > xi(x)+ 1 p

pepw(x)
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There are C" counterexamples for any finite r > 1. \

However we have for f C" with r > 1,

A _+T
for Leb a.e. x, sup h(p) > xi(x)+ M) = ;0 + = A(x).
HEpw(x) r—1 r

We conjecture
A Tt
for Leb a.e. x, sup h(u) > X/"\'(X) 4 M
nEPw(x) r—1



B, := {x, pw(x) = {u}} basin of u,
o is physical when Leb(B,) > 0.
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Let i be a physical measure of a C*° system. Then

h(i) > xalB,;

with X/\lBu the essential supremum of x on B,,.
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B, := {x, pw(x) = {u}} basin of u,
o is physical when Leb(B,) > 0.

Let i be a physical measure of a C*° system. Then

h(i) > xalB,;

with X/\lBu the essential supremum of x on B,,.

The Corollary does not hold true anymore for f C" with r < 4o00.

For the C* Bowen eight's attractor, we get x1(x) = 0 for Leb-a.e.
x in the eyes.
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f: MO acCl map,
f is SRB when h(p) = [ X7 (x) du(x) > 0.

For pu € Me, we let
BL = {x € By, Vj xj(x) = /Xj du}.

Remark : any point in B;L is Lyapunov regular and pw-regular.
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f: MO acCl map,
p is SRB when h(u) = [ x&(x) du(x) > 0.

For pu € Me, we let
BL = {x € By, Vj xj(x) = /Xj d,u}.

Remark : any point in B,L,L is Lyapunov regular and pw-regular.

Theorem (Tsujii)

Let f: M O be a C'* diffeo. Assume the union of B], over all
ergodic hyp. measures of saddle type 1 has positive Lebesgue
measure. Then there exists an ergodic hyp. SRB measure.
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f: MO acCl map,
f is SRB when h(p) = [ X7 (x) du(x) > 0.

For pu € Me, we let
BL = {x € By, Vj xj(x) = /Xj d,u}.

Remark : any point in B;L is Lyapunov regular and pw-regular.

Theorem (Tsujii)

Let f : M ¢ be a C' diffeo. Assume the union of B, over all
ergodic hyp. measures of saddle type 1 has positive Lebesgue
measure. Then there exists an ergodic hyp. SRB measure.

Corollary

| \

Let f : M O be a C*™® map. Assume the set of points x pw-regular
w.r.t. Ndf with xa(x) > 0 has positive Lebesgue measure. Then
there exists a (ergodic) SRB measure.

o’

For surface diffeos the converse also holds true. The Corollary for f
C'* would follow from the above Conjecture.



Bounded distorsion
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f:MoCh

Definition
For n € N a C! disc D,, is said to have n-bounded distorsion when

| Jac(dxf"|1.D,)|

< 2.
| Jac(dy |7, p,)]

Vx,y € Dy,

For x e M, n €N, € > 0 and a partition P of M, let B,(x,¢€) the
dynamical ball

Ba(x,€) :={y € M, d(fkx,fky) < e V0 < k < n}

and let P! the element of P" = \/}_¢ f~¥P containing x € M.
When diam(P) < e we have P] C By(x,€) for all x.



Theorem (Folklore)

Let f be C1  uniformly hyperbolic and D a local unstable disc.
There exists a scale e > 0 such that for all n and for all x € X
there is an unstable subdisc of D) of D satisfying :

e By(x,e)n D C D,
e vol(f"Dy) < vol(D)/2,
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Theorem (Folklore)

Let f be C1* uniformly hyperbolic and D a local unstable disc.
There exists a scale e > 0 such that for all n and for all x € X
there is an unstable subdisc of D) of D satisfying :

e By(x,e)n D C D,
e vol(f"Dy) < vol(D)/2,

@ DX has n-bounded distorsion.

Proof of bounded distorsion property :
@ there is 0 < A < 1 with diam(D}) < eA”,
e y +— Jac(d,f|g,) is Holder.
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Geometrical method for SRB measures in UH systems

Building SRB measures for a C1* uniformly hyperbolic system f :
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Geometrical method for SRB measures in UH systems

Building SRB measures for a C1* uniformly hyperbolic system f :
© Expanding disc : D a local unstable disc, m = Lebp proba
volume on D,
@ Bounded distortion : P be a partition with diam(P) < ¢, then
for all x we have

o vol(D))

m(P) = Dy
2vol(F"Dx)
vol(D) - Jac(dxf"|g,)’
1
Jac(dxf"|g,)

IN

IN
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Geometrical method for SRB measures in UH systems

Building SRB measures for a C1* uniformly hyperbolic system f :
© Expanding disc : D a local unstable disc, m = Lebp proba
volume on D,
@ Bounded distortion : P be a partition with diam(P) < ¢, then
for all x we have

o vol(D))

m(P) = Dy
2vol(F"Dx)
vol(D) - Jac(dxf"|g,)’
1
Jac(dxf"|g,)

<

<

() Entropy computation : for i, = £ 3778 f¥m and
= limg pn, with p(OP) =0, we have

h(w, P) > limsup L / log m(Px) dm(x).
k Nk
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We get

— 1 [ og m(P™) dm(x)

Nk

v

1
/IogJac(df”k|Eu)dm,
ng

Il
/IogJac(df|Eu)d,unk,

\Y
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We get

~ 2 [ log m(P™) dm(x)

Nk

v

1
/IogJac(df”k|Eu)dm,
Nk

Il
/IogJac(df|Eu)d/,Lnk,

\Y

then by letting kK — 400

1
Iimsup—/logm(P)’(’k)dm(X) > /IogJac(df|Eu)d,u,
k Nk
Al I

h(p) / Xy dp.

v



Yomdin's theory

Reparametrization Lemma (Yomdin, )

Let f: M O beaC® map and D a C* k-disc.
For all v > 0O, there exists a scale € > 0 such that for all n large
enough and for all x € X there is a finite family F of C*°
k-subdiscs of D with §F; < 7" satisfying :

] Bn(X, 6) NDcC UDnGJ‘—n Dn,

e vol(f"D,) < vol(D)/2 for any D, € F,
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Yomdin's theory

Reparametrization Lemma (Yomdin,B.)

Let f: M O be a C* diffemorphism and D a C* k-disc.
For all v > 0O, there exists a scale € > 0 such that for all n large
enough and for all x € X there is a finite family F of C*°
k-subdiscs of D with §F; < 7" satisfying :

® By(x,e)N D c Up,ex, Dn,

e vol(f"D,) < vol(D)/2 for any D, € F,

@ D, has n-bounded distorsion for any D, € F .
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Theorem (Yomdin)

Shub’s entropy conjecture holds true for C*° systems.
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Shub’s entropy conjecture holds true for C*° systems.

Theorem (Newhouse)

fec=,

V€ M, limsup h(v) < h(p).

v
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Theorem (Yomdin)

Shub’s entropy conjecture holds true for C*° systems.

Theorem (Newhouse)

fec=,

V€ M, limsup h(v) < h(p).

v

Theorem (Misurewicz, Downarowicz-Newhouse, Buzzi)

There are counterexamples for any finite r > 1.

However we have for f C"

Vi e M, limsup h(v) < h(u) + d'mr(M) /Xf dp.

V=t



Essential domain and image

X, Y metric spaces, Y separable,
¢ : X — Y Borel measurable,
m Borel measure on X.

Definition (Essential image/domain)

Tmy(m) := {y €Y, YU <€ V(y) m(¢—*U) > 0}
D0m¢ = {X e X, (,ZS(X) S Im¢( )}
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¢(x) € K for m-a.e. x. For Y = R the essential supremum is

¢ = sup (Img(m)). The essential domain has full m-measure.



Essential domain and image

X, Y metric spaces, Y separable,
¢ : X — Y Borel measurable,
m Borel measure on X.

Definition (Essential image/domain)

Tmy(m) := {y €Y, YU <€ V(y) m(¢—*U) > 0}
D0m¢ = {X e X, ¢(X) S Im¢( )}

The essential image is the smallest closed subset K of Y for which
¢(x) € K for m-a.e. x. For Y =R the essential supremum is
¢ = sup (Img(m)). The essential domain has full m-measure.

In the following, for f : X O continuous we consider

¢ =pw: X — KM. When X = M is a Riemannian manifold and
m the Lebesgue measure then Tmp,(m) is the set of physical-like
measures as defined by Enrich and Catsigeras.
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Key Proposition

Fix a < xk and let Leb, = Leb | (xk>a}-

Proposition

For x € Domyp,,(Leb,), there exists i € pw(x) s.t.

h(p) = a.
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Key Proposition

Fix a < xk and let Leb, = Leb | (xk>a}-

Proposition

For x € Domyp,,(Leb,), there exists i € pw(x) s.t.

h(p) = a.

Proof of Main Theorem : For (a;)/en dense in Rt we let

Fi = {x* < a;} UDomp,(Leb,,).

Then Leb(["), F/) = 1. Moreover for x € (), F; and for a; with
xX*(x) > ay, there is 1y € pw(x) with h(u) > a;.
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Key Proposition

Fix a < xk and let Leb, = Leb | (xk>a}-

Proposition

For x € Domyp,,(Leb,), there exists i € pw(x) s.t.

h(p) = a.

Proof of Main Theorem : For (a;)/en dense in Rt we let

Fi = {x* < a;} UDomp,(Leb,,).

Then Leb(["), F/) = 1. Moreover for x € (), F; and for a; with
xX*(x) > ay, there is 1y € pw(x) with h(u) > a;.
By u.s.c. of the entropy, any accumulation point u € pw(x) of

(w1,),, with aj, ZAN x¥(x) satisfies

() > limsup h(y,) > lim a;, = x*(x).
n n
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Main lines of the proof

Xy € mpw(Leba) fixed,
@ NU Expanding disc : D a C*® embedded k-disc and E C D
with Lebp(E) > 0 s.t. for any y € E
o X*(y,¢(T,D)) > a with ¢ the Pliicker embedding,
o M (pu(y), pw(x.)) < 1.
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o |Jac(d,f"|1,p)| > €™,
o oy, pw(x.)) <1,
my, proba induced on E, by Lebp,
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Main lines of the proof

Xy € mpw(Leba) fixed,
@ NU Expanding disc : D a C*® embedded k-disc and E C D
with Lebp(E) > 0 s.t. for any y € E
o X*(y,¢(T,D)) > a with ¢ the Pliicker embedding,
o 2 (pu(y), pw(x.)) < 1.
@ Borel-Cantelli argument : for n € J C N with §J = 0o, subset
E, of E with % < 1s.t forany y € E,
o |Jac(d,f"|1,p)| > €™,
o oy, pw(x.)) <1,
my, proba induced on E, by Lebp,
© Bounded distortion for Jac(df|p) : P partition with
diam(P) < € for 7y < 1 as in Reparametrization Lemma,
© Entropy computation : for p, = L 32028 f¥m, and
w = limg pp, with ©(OP) = 0, we have
0 (1, pw(xx)) < 1 and

h(u, P) 2 a.
We conclude by u.s.c. of the metric entropy on M.
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Step 1. Choice of D and E

x, € Domyp,(Leb,), i.e. pw(x.) € Imp, (Leb,), thus Vn > 0,

E' = {y, x*(y) > a and 2™(pw(y), pw(x.)) < n}

satisfies Leb(E’) > 0. By reducing E’ the Lyapunov space V) w.r.t.
A¥df is continuous on E’.
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x, € Domyp,(Leb,), i.e. pw(x.) € Imp, (Leb,), thus Vn > 0,

E' = {y, x*(y) > a and 2™(pw(y), pw(x.)) < n}

satisfies Leb(E’) > 0. By reducing E’ the Lyapunov space V) w.r.t.
A¥df is continuous on E’.

Let z be a Lebesgue density point of E’ and U € V(z) s.t.
Vy e UNE', (Hy,) ¢ Vao(y) for some constant k-distribution H.

Since Leb(U N E") > 0 one may take by Fubini D C H, with
Lebp(E’) > 0 for some y € UNE'. Put E = E'ND.



Step 2 : Borel-Cantelli argument

Take
E,:={y € E, |Jac(d,f"|7,p)| > €™ and d(u3,, pw(x«)) < n}.
For v > 0 small error term, let us show that
3J € N with |J| = 400 s.t.

Lebp(E,) > e™™.

22/27



Step 2 : Borel-Cantelli argument

Take
E,:={y € E, |Jac(d,f"|7,p)| > €™ and d(u3,, pw(x«)) < n}.
For v > 0 small error term, let us show that
3J € N with |J| = 400 s.t.

Lebp(E,) > ™.

Argue by contradiction :

[Vn large Lebp(E,) < e™™]
= [Lebp(limsup, E,;) = 0.]

But limsup, E, D E and Lebp(E) > 0...

22/27



Step 3 : Bounded distorsion

€ > 0 given by Reparametrization Lemma w.r.t. small error term ~,
P be a finite partition with diam(P) < e.

For all n large and all x € X, let 7 be a family of C*> k-discs
with fF) < 7" s.t.

@ P} C By(x,e)ND C UDne]-‘,f Dy,

e vol(f"D,) < 1 for any D, € F},

@ D, has n-bounded distorsion for any D, € F .
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Step 4 : Entropy computation

my, proba induced on E, by Lebp for n € J,
P as above, GX = {D, € FY, DyNE, # 0} for x € M.
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Step 4 : Entropy computation

my, proba induced on E, by Lebp for n € J,
P as above, GX = {D, € FY, DyNE, # 0} for x € M.

1 vol(D,)
n Pn < )
m(P) S Lo (B DZE:QX vol(D)

1y 2e~Mavol(F7D,)
Lebp(Ep) vol(D) ’

Dneg[);

e MAPGX o
(P < n_ -~ n(a 27).
ma(Px) Lebp(Eq) = ©
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Step 4 : Entropy computation

my, proba induced on E, by Lebp for n € J,
P as above, GX = {D, € FY, DyNE, # 0} for x € M.

1 vol(Dy)
n(Pr) < = ;
M) S (& DZE:QX vol(D)

1y 2e~Mavol(F7D,)
Lebp(Ep) vol(D) ’

Dneg,>1<

e MAPGX o
(P < n_ -~ n(a 27).
ma(Px) Lebp(Eq) = ©

Therefore for p = limy pp, with p(0P) =0 :

1
h(p, P) > lim iJnf - / log mu(PY) dmp(x) 2 a.
ne
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Counterexample in finite smoothness

Theorem (Downarowicz-Newhouse)

Let f be a C" surface diffeomorphism for 1 < r < 4+oo with
homoclinic tangency at a saddle hyp. fixed point p.

Then there exists g arbitrarily close to f admitting a sequence of
horseshoes (Hp)n with limp, heop(Hn) = w s.t.
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Counterexample in finite smoothness

Theorem (Downarowicz-Newhouse)

Let f be a C" surface diffeomorphism for 1 < r < 4+oo with
homoclinic tangency at a saddle hyp. fixed point p.

Then there exists g arbitrarily close to f admitting a sequence of
horseshoes (Hp)n with limp, heop(Hn) = w s.t.

® supyep, [xa(x) — X 2 g,

o pw(Hn) = {3p,},
o HD“(H,) & 1.
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Theorem (under preparation)

Let f be a C" surface diffeomorphism for 1 < r < +o00 with a
homoclinic tangency at a dissipative saddle hyp. fixed point p.
Then there exists g arbitrarily C"-close to f with E C M s.t.

o Vx € E, xa(x) = 2alee),

° pW(E) = {5Pg}'

e Leb(E) > 0.
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Thank you for your attention !
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