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Lyapunov exponents

X a Borel space and f : X 	 measurable,
π : V → X a measurable vector fiber bundle over X equipped with
a measurable Riemannian metric ‖ · ‖x on each fiber Vx := π−1x ,
F : V 	 a measurable vector bundle morphism with π ◦ F = f ◦ π.

Definition (Pointwise Lyapunov exponent)

For x ∈ X and v ∈ Vx we let

χ(x , v) := lim sup
n→+∞

1

n
log ‖F n(v)‖f nx .

For a fixed x , the set {v , χ(x , v) ≤ λ} is a vector subspace
nondecreasing in λ ∈ R ∪ {±∞}.
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Definition (Lyapunov flag )

There exist

r = r(x) ∈ N \ {0},
vector spaces Vx = V1(x) ) · · · ) Vr (x) 6= 0,

+∞ ≥ β1(x) > · · ·βr (x) ≥ −∞
s.t. ∀v ∈ Vi (x) \ Vi+1(x), χ(x , v) = βi (x).

The maps r , βi ,Vi are measurable. Moreover r and βi are
f -invariant.

Let us denote by χj(x) ∈ {βi (x), i = 1, · · · , r} for
j = 1, · · · , dim(V ) the Lyapunov exponents at x counted
nonincreasingly with multiplicity, i.e.

] {j , χj = βi} = dim(Vi )− dim(Vi+1).
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χk the top Lyapunov exponent of ΛkF : ΛkV 	,
χΛ = maxk χ

k of ΛF : ΛV = ⊕kΛkV 	.

Definition

x is said Lyapunov regular when χk(x) =
∑k

j=1 χj(x) for all k.

By Oseledets theorem the set of Lyapunov regular points has full
measure for any f -invariant probability measure when∫

log+ |||Fx |||dµ(x) < +∞.

Remark : χ+
Λ (x) =

∑
j

χ+
j (x) for x Lyapunov regular.
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Empirical exponent

(X , d) compact metric, f : X 	 continuous,
(M, d) compact set of f -invariant probas,
Me the subset of ergodic measures.

Definition

For x ∈ X, we let pω(x) be the compact subset of M consisting of
accumulation points of the sequence of empirical measures

(µxn)n :=

(
1

n

n−1∑
k=0

δf kx

)
n∈N

.

(KM, dHau) compact set of nonempty closed subsets of M.

Remark : pω : x 7→ pω(x) from X to KM is Borel measurable.

5/27



Empirical exponent

(X , d) compact metric, f : X 	 continuous,
(M, d) compact set of f -invariant probas,
Me the subset of ergodic measures.

Definition

For x ∈ X, we let pω(x) be the compact subset of M consisting of
accumulation points of the sequence of empirical measures

(µxn)n :=

(
1

n

n−1∑
k=0

δf kx

)
n∈N

.

(KM, dHau) compact set of nonempty closed subsets of M.

Remark : pω : x 7→ pω(x) from X to KM is Borel measurable.

5/27



F : V 	 a continuous Riemannian bundle morphism over f : X 	.

∀x ∈ X ∀p ∈ N, λp(x) := lim sup
n

1

n

n−1∑
l=0

log+ |||F p|||f lx .

The sequence (λp(x))p being subadditive, we may define the
empirical exponent λ(x) at x as

λ(x) := lim
p

λp(x)

p
≥ χ+

1 (x).

Lemma

λ(x) = max
µ∈pω(x)

∫
χ+

1 dµ.
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λΛ the empirical exponent of ΛF : ΛV = ⊕kΛkV 	

Definition

x is said pω-regular when λΛ(x) = χ+
Λ (x).

The set of pω-regular points have full µ-measure for any µ ∈Me .

Any point in the bassin of a hyperbolic attractor is pω-regular
w.r.t. the derivative cocycle.
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Statements

M compact manifold, f : M 	 a C1 map,
Exponent w.r.t. derivative cocycle df on TM.

Theorem (Ruelle)

f C1,

∀µ ∈M, h(µ) ≤
∫
χ+

Λ dµ.

For a C∞ system the converse inequality holds physically :

Main Theorem

f C∞,
for Leb a.e. x , max

µ∈pω(x)
h(µ) ≥ χ+

Λ (x).

Remark : Ruelle’s inequality may be restated for f C1 as

∀x ∈ M, sup
µ∈pω(x)

h(µ) ≤ λΛ(x).
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Theorem

There are Cr counterexamples for any finite r ≥ 1.

However we have for f Cr with r > 1,

for Leb a.e. x , sup
µ∈pω(x)

h(µ) ≥ χ+
Λ (x) +

λΛ(x)− χ+
λ (x)

r − 1
+

d

r
λ(x).

We conjecture

for Leb a.e. x , sup
µ∈pω(x)

h(µ) ≥ χ+
Λ (x) +

λΛ(x)− χ+
λ (x)

r − 1
.
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Bµ := {x , pω(x) = {µ}} basin of µ,
µ is physical when Leb(Bµ) > 0.

Corollary

Let µ be a physical measure of a C∞ system. Then

h(µ) ≥ χΛ|Bµ ,

with χΛ|Bµ the essential supremum of χΛ on Bµ.

The Corollary does not hold true anymore for f Cr with r < +∞.

For the C∞ Bowen eight’s attractor, we get χ1(x) = 0 for Leb-a.e.
x in the eyes.
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f : M 	 a C1 map,
µ is SRB when h(µ) =

∫
χ+

Λ (x) dµ(x) > 0.

For µ ∈Me , we let
B ′µ :=

{
x ∈ Bµ, ∀j χj(x) =

∫
χj dµ

}
.

Remark : any point in B ′µ is Lyapunov regular and pω-regular.

Theorem (Tsujii)

Let f : M 	 be a C1+ diffeo. Assume the union of B ′µ over all
ergodic hyp. measures of saddle type µ has positive Lebesgue
measure. Then there exists an ergodic hyp. SRB measure.

Corollary

Let f : M 	 be a C∞ map. Assume the set of points x pω-regular
w.r.t. Λ df with χΛ(x) > 0 has positive Lebesgue measure. Then
there exists a (ergodic) SRB measure.

For surface diffeos the converse also holds true. The Corollary for f
C1+ would follow from the above Conjecture.
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Bounded distorsion

f : M 	 C1,

Definition

For n ∈ N a C1 disc Dn is said to have n-bounded distorsion when

∀x , y ∈ Dn,
| Jac(dx f

n|TxDn)|
| Jac(dy f n|TyDn)|

< 2.

For x ∈ M, n ∈ N, ε > 0 and a partition P of M, let Bn(x , ε) the
dynamical ball

Bn(x , ε) := {y ∈ M, d(f kx , f ky) < ε ∀0 ≤ k < n}

and let Pn
x the element of Pn =

∨n−1
k=0 f

−kP containing x ∈ M.
When diam(P) < ε we have Pn

x ⊂ Bn(x , ε) for all x .
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Theorem (Folklore)

Let f be C 1

+

uniformly hyperbolic and D a local unstable disc.
There exists a scale ε > 0 such that for all n and for all x ∈ X
there is an unstable subdisc of Dx

n of D satisfying :

Bn(x , ε) ∩ D ⊂ Dx
n ,

vol(f nDx
n ) < vol(D)/2,

Dx
n has n-bounded distorsion.

Proof of bounded distorsion property :

there is 0 < λ < 1 with diam(Dx
n ) < ελn,

y 7→ Jac(dy f |Eu) is Hölder.
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Geometrical method for SRB measures in UH systems

Building SRB measures for a C1+ uniformly hyperbolic system f :

1 Expanding disc : D a local unstable disc, m = LebD proba
volume on D,

2 Bounded distortion : P be a partition with diam(P) < ε, then
for all x we have

m(Pn
x ) ≤ vol(Dx

n )

vol(D)
,

≤ 2 vol(f nDx
n )

vol(D) · Jac(dx f n|Eu)
,

≤ 1

Jac(dx f n|Eu)
.

3 Entropy computation : for µn = 1
n

∑n−1
k=0 f

km and
µ = limk µnk with µ(∂P) = 0, we have

h(µ,P) ≥ lim sup
k
− 1

nk

∫
logm(Pnk

x ) dm(x).
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We get

− 1

nk

∫
logm(Pnk

x ) dm(x) ≥ 1

nk

∫
log Jac(df nk |Eu) dm,

=

≥
∫

log Jac(df |Eu)dµnk ,

then by letting k → +∞

lim sup
k
− 1

nk

∫
logm(Pnk

x ) dm(x) ≥
∫

log Jac(df |Eu)dµ,

≥ =

h(µ) ≥
∫
χ+

Λ dµ.
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Yomdin’s theory

Reparametrization Lemma (Yomdin,

B.

)

Let f : M 	 be a C∞ map and D a C∞ k-disc.
For all γ > 0, there exists a scale ε > 0 such that for all n large
enough and for all x ∈ X there is a finite family Fx

n of C∞
k-subdiscs of D with ]Fx

n ≤ eγn satisfying :

Bn(x , ε) ∩ D ⊂
⋃

Dn∈Fn
Dn,

vol(f nDn) < vol(D)/2 for any Dn ∈ Fx
n ,

Dn has n-bounded distorsion for any Dn ∈ Fx
n .
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Theorem (Yomdin)

Shub’s entropy conjecture holds true for C∞ systems.

Theorem (Newhouse)

f ∈ C∞,
∀µ ∈M, lim sup

ν→µ
h(ν) ≤ h(µ).

Theorem (Misurewicz, Downarowicz-Newhouse,Buzzi)

There are counterexamples for any finite r ≥ 1.

However we have for f Cr

∀µ ∈M, lim sup
ν→µ

h(ν) ≤ h(µ) +
dim(M)

r

∫
χ+

1 dµ.
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Essential domain and image

X ,Y metric spaces, Y separable,
φ : X → Y Borel measurable,
m Borel measure on X .

Definition (Essential image/domain)

Imφ(m) := {y ∈ Y , ∀U ∈ V(y) m(φ−1U) > 0}

Domφ(m) :=
{
x ∈ X , φ(x) ∈ Imφ(m)

}
.

The essential image is the smallest closed subset K of Y for which
φ(x) ∈ K for m-a.e. x . For Y = R the essential supremum is
φ = sup

(
Imφ(m)

)
. The essential domain has full m-measure.

In the following, for f : X 	 continuous we consider
φ = pω : X → KM. When X = M is a Riemannian manifold and
m the Lebesgue measure then Impω(m) is the set of physical-like
measures as defined by Enrich and Catsigeras.
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Key Proposition

Fix a < χk and let Leba = Leb |{χk>a}.

Proposition

For x ∈ Dompω(Leba), there exists µ ∈ pω(x) s.t.

h(µ) ≥ a.

Proof of Main Theorem : For (al)l∈N dense in R+ we let

Fl = {χk ≤ al} ∪Dompω(Lebal ).

Then Leb(
⋂

l Fl) = 1. Moreover for x ∈
⋂

l Fl and for al with
χk(x) > al , there is µl ∈ pω(x) with h(µl) ≥ al .

By u.s.c. of the entropy, any accumulation point µ ∈ pω(x) of
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Main lines of the proof

x∗ ∈ Dompω(Leba) fixed,
1 NU Expanding disc : D a C∞ embedded k-disc and E ⊂ D

with LebD(E ) > 0 s.t. for any y ∈ E
χk(y , ι(TyD)) > a with ι the Plücker embedding,
dHau(pω(y), pω(x∗))� 1.

2 Borel-Cantelli argument : for n ∈ J ⊂ N with ]J =∞, subset

En of E with | log LebD(En)|
n � 1 s.t. for any y ∈ En

| Jac(dy f
n|TyD)| ≥ ena,

d(µy
n , pω(x∗))� 1,

mn proba induced on En by LebD ,

3 Bounded distortion for Jac(df |TD) : P partition with
diam(P) < ε for γ � 1 as in Reparametrization Lemma,

4 Entropy computation : for µn = 1
n

∑n−1
k=0 f

kmn and
µ = limk µnk with µ(∂P) = 0, we have

d (µ, pω(x∗))� 1 and

h(µ,P) & a.

We conclude by u.s.c. of the metric entropy on M.
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Step 1. Choice of D and E

x∗ ∈ Dompω(Leba), i.e. pω(x∗) ∈ Impω(Leba), thus ∀η > 0,

E ′ = {y , χk(y) > a and dHau(pω(y), pω(x∗)) < η}

satisfies Leb(E ′) > 0. By reducing E ′ the Lyapunov space V2 w.r.t.
Λkdf is continuous on E ′.

Let z be a Lebesgue density point of E ′ and U ∈ V(z) s.t.
∀y ∈ U ∩ E ′, ι(Hy ) /∈ V2(y) for some constant k-distribution H.

Since Leb(U ∩ E ′) > 0 one may take by Fubini D ⊂ Hy with
LebD(E ′) > 0 for some y ∈ U ∩ E ′. Put E = E ′ ∩ D.
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Step 2 : Borel-Cantelli argument

Take

En := {y ∈ E , | Jac(dy f
n|TyD)| ≥ ena and d(µyn, pω(x∗)) ≤ η}.

For γ > 0 small error term, let us show that

∃J ⊂ N with |J| = +∞ s.t.

LebD(En) > e−nγ .

Argue by contradiction :

[∀n large LebD(En) < e−nγ ]

⇒ [LebD(lim supn En) = 0.]

But lim supn En ⊃ E and LebD(E ) > 0...
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Step 3 : Bounded distorsion

ε > 0 given by Reparametrization Lemma w.r.t. small error term γ,

P be a finite partition with diam(P) < ε.

For all n large and all x ∈ X , let Fx
n be a family of C∞ k-discs

with ]Fx
n ≤ eγn s.t.

Pn
x ⊂ Bn(x , ε) ∩ D ⊂

⋃
Dn∈Fx

n
Dn,

vol(f nDn) < 1 for any Dn ∈ Fx
n ,

Dn has n-bounded distorsion for any Dn ∈ Fx
n .
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Step 4 : Entropy computation

mn proba induced on En by LebD for n ∈ J,

P as above, Gxn = {Dn ∈ Fx
n , Dn ∩ En 6= ∅} for x ∈ M.

mn(Pn
x ) ≤ 1

LebD(En)

∑
Dn∈Gxn

vol(Dn)

vol(D)
,

≤ 1

LebD(En)

∑
Dn∈Gxn

2e−navol(f nDn)

vol(D)
,

mn(Pn
x ) ≤ e−na]Gxn

LebD(En)
≤ e−n(a−2γ).

Therefore for µ = limk µnk with µ(∂P) = 0 :

h(µ,P) ≥ lim inf
n∈J

−1

n

∫
logmn(Pn

x ) dmn(x) & a.
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Counterexample in finite smoothness

Theorem (Downarowicz-Newhouse)

Let f be a Cr surface diffeomorphism for 1 ≤ r < +∞ with
homoclinic tangency at a saddle hyp. fixed point p.

Then there exists g arbitrarily close to f admitting a sequence of

horseshoes (Hn)n with limn htop(Hn) =
mini |χi (pg )|

r s.t.

supx∈Hn

∣∣∣χ1(x)− χ1(pg )
r

∣∣∣ n−→ 0,

pω(Hn)
n−→ {δpg },

HDu(Hn)
n−→ 1.
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Theorem (under preparation)

Let f be a Cr surface diffeomorphism for 1 ≤ r < +∞ with a
homoclinic tangency at a dissipative saddle hyp. fixed point p.

Then there exists g arbitrarily Cr -close to f with E ⊂ M s.t.

∀x ∈ E , χ1(x) =
χ1(pg )

r ,

pω(E ) = {δpg },
Leb(E ) > 0.
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Thank you for your attention !
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