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EXISTENCE OF MEASURES OF MAXIMAL ENTROPY

FOR Cr INTERVAL MAPS

DAVID BURGUET

(Communicated by Nimish Shah)

Abstract. We show that a Cr (r > 1) map of the interval f : [0, 1] → [0, 1]

with topological entropy larger than
log ‖f ′‖∞

r
admits at least one measure

of maximal entropy. Moreover the number of measures of maximal entropy

is finite. It is a sharp improvement of the 2006 paper of Buzzi and Ruette
in the case of Cr maps and solves a conjecture of J. Buzzi stated in his 1995
thesis. The proof uses a variation of a theorem of isomorphism due to J. Buzzi
between the interval map and the Markovian shift associated to the Buzzi-
Hofbauer diagram.

1. Introduction

Entropy is an important invariant of conjugacy which estimates the dynamical
complexity of a system by counting the number of distinguishable orbits. This
can be done at a topological or a measure theoretical level which are related by
a variational principle: the topological entropy is the supremum of the entropy of
invariant probability measures. Measures which realize the supremum are remark-
able, as they reflect all the complexity of the system from the point of view of
entropy. In this paper we discuss the existence of such measures for Cr interval
maps with r > 1.

We first recall the definition of entropy for compact topological dynamical sys-
tems. Let (X, d) be a compact metric space and let f : X → X be a continuous
map.

Let S ⊂ X, δ > 0 and n ∈ N. A subset E of S is an (n, δ) separated set of
S if for all x, y ∈ E with x �= y there exists 0 ≤ k < n with d(fkx, fky) > δ.
We denote by s(n, δ, S) the maximal cardinality of an (n, δ) separated set of S. A
subset F of X is an (n, δ) covering set of S if for all x ∈ S there exists y ∈ F with
d(fkx, fky) < δ for all 0 ≤ k < n . We denote by r(n, δ, S) the minimal cardinality
of an (n, δ) covering set of S. The topological entropy of f denoted by htop(f) is
defined as follows:

htop(f) := lim
δ→0

lim sup
n→+∞

1

n
log s(n, δ,X).

If μ is an invariant ergodic probability measure we define the measure theoretical
entropy of μ by counting the orbits in the sets of μ-measure larger than λ ∈]0, 1[:

hλ(f, μ, δ) := lim sup
n→+∞

1

n
log inf

μ(Y )>λ
s(n, δ, Y )
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and then for any λ ∈]0, 1[ (the limit below does not depend on λ by ergodicity):

h(f, μ) := lim
δ→0

hλ(f, μ, δ).

For general invariant measures ν one can define the entropy h(f, ν) of ν as
h(f, ν) :=

∫
h(f, μ)dMν(μ) where ν =

∫
μdMν(μ) is the ergodic decomposition of

ν. This definition is due to Katok [11]. Observe that one can use covering sets
instead of separated sets in the above definitions, as we always have r(n, δ, S) ≤
s(n, δ, S) ≤ r(n, δ/2, S) [18].

The topological entropy and the measure theoretical entropy are related by the
well known variational principle [12], [13]:

htop(f) = sup
μ∈M(X,f)

h(f, μ) = sup
μ∈Me(X,f)

h(f, μ)

where M(X, f) is the set of f -invariant probability measures and Me(X, f) ⊂
M(X, f) the subset of ergodic mesures.

A measure μ ∈ M(X, f) is said to be maximal if h(μ) = htop(f). Such measures
do not always exist and the number of ergodic maximal measures may be infinite.
Under assumptions of expansiveness we can ensure the existence of maximal mea-
sures. By using Y. Yomdin’s theory, S. Newhouse showed that if f is a C∞ map
defined on a smooth compact manifold X, then the entropy function h is upper
semicontinuous on the compact set M(X, f) endowed with the weak-star topology
and therefore f admits a maximal measure [16]. Moreover there exist counter-
examples to the existence of maximal measures and to their finitude in the case of
Cr maps for any finite r > 0 (see [6] for interval maps and [15] for diffeomorphisms
on a compact manifold of dimension larger than or equal to 4).

Main Theorem. Let r > 1 and f : [0, 1] → [0, 1] be a Cr map, such that htop(f) >
log ‖f ′‖∞

r . Then f admits a maximal measure. Moreover the number of ergodic
maximal measures is finite.

This result is sharp according to the examples of [6], where the topological en-

tropy is precisely equal to log ‖f ′‖∞
r .

In [7], J. Buzzi and S. Ruette have shown the same result under the stronger

assumption htop(f) > 2 log ‖f ′‖∞
r . We essentially combine the strategy of their

proof with an estimate of the number of monotone branches with big derivatives
used in [10]. Following the isomorphism theorems of [5] and [8] we prove that
the Markov shift given by the Buzzi-Hofbauer diagram preserves the entropy of
invariant measures with positive entropy. In particular f admits a maximal measure
if and only if the Markov shift does. The works of B. M. Gurevič and S. Savchenko
then give some properties of Markov shifts that do not have maximal measures.
These properties allow us to bound the topological entropy of f from above by
log ‖f ′‖∞

r by shadowing large pieces of typical orbits with critical points.
To prove the existence of maximal measures one uses in most known examples

an argument of upper semicontinuity of the entropy function. Here it is not the
case as the entropy of a Cr map may not be upper semicontinuous, even at large
entropy measures. However we show that a large defect of upper semicontinuity
only occurs at small entropy measures.

The definitions of the Buzzi-Hofbauer diagram and the associated Markov shift
together with known isomorphism theorems are recalled in Section 2. In Section 3
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MEASURES OF MAXIMAL ENTROPY FOR Cr INTERVAL MAPS 959

we introduce a property of shadowing for invariant measures that we use in the
proof of the Main Theorem presented in Section 4. The last section deals with the
defect of upper semicontinuity of the entropy function.

2. Markov shift

We recall in this section the construction of the Buzzi-Hofbauer Markov diagram
for C1 interval maps. We first recall the definitions and some properties of the
Markov shift given by an oriented graph and the symbolic dynamic associated to
the natural partition in monotone branches.

2.1. Markov shift on oriented graphs. Let G be a countable oriented graph.
Let u, v ∈ G. We use the notation u → v when there is an oriented arrow from u to v.
Consider Σ(G) := {(vn)n ∈ GZ, ∀n ∈ Z, vn → vn+1}. The Markov shift on G is the
shift σ((vn)n) = (vn+1)n on Σ(G). Remark that Σ(G) is a priori not compact. We
define the entropy h(G) as the supremum of h(σ, ξ) over all σ-invariant probability
measures ξ (we refer to [18] for entropy in the general context of measure preserving
systems). A σ-invariant measure ξ is said to be maximal if h(σ, ξ) = h(G). If F is
a finite set of vertices we write [F ] := {(vn)n ∈ Σ(G), v0 ∈ F}.

The proposition below follows from results of Gurevich and Savchenko [14]:

Proposition 1 ([7]). Let G be a countable oriented graph with entropy 0 < h(G) <
+∞. Assume that Σ(G) does not admit maximal measure or that Σ(G) admits an
infinite number of maximal ergodic measures.

Then there exists a sequence of ergodic σ-invariant measures (ξm)m such that:

• limm h(σ, ξm) = h(G);
• for all finite set of vertices F , limm ξm([F ]) = 0.

2.2. Symbolic dynamics associated to the natural partition. We call a
monotone branch (with respect to f) any subinterval J of [0, 1] such that the in-
terval map f is monotone on J . Let C be the critical set of f , i.e. the set of
points which do not belong to the interior of any monotone branch of f . It is a
compact subset of the set of vanishing points of the derivative f ′. Let us denote
by P the set of connected components of [0, 1] \ C. The two-sided symbolic dy-
namic Σ(f, P ) associated to f is defined as the shift on the closure in P Z (for the
product topology) of the two-sided sequences A = (An) such that for all n ∈ Z

and l ∈ N the word An . . . An+l is admissible, i.e.
⋂k

l=0 f
−lAn+l �= ∅. The fol-

lower set of a finite P -word Bn . . . Bn+l is fol(Bn . . . Bn+l) := {An+lAn+l+1 . . . ∈
PN, s.t. ∃(An) ∈ Σ(f, P ) with An . . . An+l = Bn . . . Bn+l}. Let N := {A ∈
Σ(f, P ) ∀n0 ∃n ≥ n0, fol(A−n . . . A0) �= fol(A−n0

. . . A0)}. Then the Markovian
subshift ΣM (f, P ) of Σ(f, P ) is defined as follows:

Σ(f, P ) \ ΣM (f, P ) :=
⋃
p∈Z

σpN.

By an argument of ergodicity [6] one can see that any ergodic invariant proba-
bility measure ν on Σ(f, P ) with ν(ΣM (f, P )) �= 1 satisfies ν(N) = 1.

The symbolic dynamics extends the dynamic on the interval as follows. For any

A = (An) ∈ Σ(f, P ) we let π(A) :=
⋂

k∈N

⋂k
l=0 f

−lAl. Since f is monotone on each

element of P the set
⋂k

l=0 f
−lAl is an interval for all k ∈ N. In particular π(A)

is a point or a compact nontrivial interval, but this last possibility occurs only for
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a countable set of elements of Σ(f, P ). Therefore the application π extends to a
Borelian map from Σ(f, P ) to the interval [0, 1]. Now we recall Lemma 5.3 of [6]:

Proposition 2 ([6], [8]). The projection π : Σ(f, P ) → [0, 1] induces a bijection
π∗ preserving entropy between ergodic invariant probability measures of (Σ(f, P ), σ)
and ([0, 1], f) with positive entropy.

2.3. Markov diagram and isomorphism theorem. Let P be the set of ad-
missible P -words. We endow P with the following equivalence relation. We say
A−n . . . A0 ∼ B−m . . . B0 if and only if there exists 0 ≤ k ≤ min(m,n) such that:

• A−k . . . A0 = B−k . . . B0;

•
⋂n

i=0 f
iA−i =

⋂k
i=0 f

iA−i, i.e. fol(A−n . . . A0) = fol(A−k . . . A0);

•
⋂n

i=0 f
iB−i =

⋂k
i=0 f

iB−i, i.e. fol(B−m . . . A0) = fol(B−k . . . A0).

We endow D := P/ ∼ with a structure of oriented graph in the following way
[6]: there exists an oriented arrow α → β between two elements α, β of D if and
only if there exists an integer n and A−n . . . A0A1 ∈ P such that α ∼ A−n . . . A0

and β ∼ A−n . . . A0A1. This graph is known as the Buzzi-Hofbauer diagram. We
recall now the corresponding isomorphism theorem (Theorem 5.7 of [6]):

Theorem 1 ([6], [8]). The map π : Σ(D) → Σ(f, P ) defined by π((αn)n) = Bn,
where Bn is the last letter of the word αn, realizes a measurable conjugacy be-
tween Σ(D) and ΣM (f, P ). In particular any invariant measure ν on Σ(f, P ) with
ν(ΣM (f, P )) = 1 lifts to a unique measure in Σ(D) with the same entropy.

To summarize we have the following diagram. All the semiconjugacies in the
diagram preserve the entropy of measures. The sign = means that the semiconju-
gacy is a bijection between ergodic invariant measures with positive entropy. In the
whole paper all the semi-conjugacies will be denoted by π (without any confusion).

(Σ(D), σ)� �

����
���

���
���

� �

���
��

��
��

��
��

��
��

��
��

(ΣM (f, P ), σ)� �

��
Σ(f, P )

([0, 1], f)

We let DN be the subset of D generated by elements of
⋃N

k=1 P
k, i.e. α ∈

DN if and only if there exists 0 ≤ k < N and A−k . . . A0 ∈ P such that α ∼
A−k . . . A0. We call the significative part of α ∈ D the word A−nα

. . . A0 where
nα is the smallest integer N such that α ∈ DN (in particular fol(A−nα

. . . A0) �=
fol(A−nα+1 . . . A0) when nα > 0). We will also make use of the following lemma
proved in [7]:

Lemma 1 ([7]). Let (ξm)m be a sequence of σ-invariant ergodic measures on Σ(D)
such that:

• h(σ, ξm) > 0 for all m;
• for any finite set of vertices F of D, limm ξm([F ]) = 0.

Then for all N ∈ N we have limm ξm([DN ]) = 0.
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3. The shadowing property

We introduce in this section a notion of shadowing for invariant measures, which
is convenient in the proof of the Main Theorem. For any A ∈ Σ(f, P ) and any
N ∈ N we first define rN (A) as the least n ∈ N ∪ {+∞} with n > N such that
fol(A−n−1 . . . A0) �= fol(A−n . . . A0). Observe that this last inequality implies
that there exists a point y in ∂A−n−1 such that f(y) ∈

⋂n
l=0 f

−lA−n+l: the point
y shadows the piece of orbit A−n−1 . . . A0.

An ergodic invariant measure of Σ(f, P ), respectively a sequence (νm)m of er-
godic invariant measures of Σ(f, P ), is said to satisfy the shadowing property
when for all integers N ,

ν(rN < +∞) = 1,

respectively lim
m

νm(rN < +∞) = 1.

The next two lemmas obviously follow from the definitions of DN and ΣM (f, P ).
The proofs are left to the reader.

Lemma 2. Let ν be an ergodic σ-invariant measure on Σ(f, P ) such that
ν(ΣM (f, P )) = 0. Then ν satisfies the shadowing property.

Lemma 3. Let (ξm)m be a sequence of ergodic σ-invariant measures of Σ(D) such
that limm ξm([DN ]) = 0 for all integers N . Then the induced sequence (νm)m =
(π∗ξm)m on Σ(f, P ) satisfies the shadowing property.

Let ε > 0 and N ∈ N and let ν be an ergodic invariant probability measure on
Σ(f, P ) with ν({rN < +∞}) > 1− ε and h(σ, ν) > 0. For any such triple (ν,N, ε)
we will associate a set of large ν-measure for which we manage to estimate the
number of monotone branches intersecting its π-image in [0, 1]. These estimates
will then be used in the next section to prove the Main Theorem.

We choose N ′ large enough (depending on ν) such that ν({rN < N ′}) > 1 − ε,
and by ergodicity we may consider a Borel set B of Σ(f, P ) with ν(B) > 1− ε such
that 1

n �
{
0 ≤ k ≤ n, σkA ∈ {rN < N ′}

}
> 1 − ε for all A in B and for all large n.

To any A ∈ B and for any large n we associate disjoint intervals of integers [ai, bi]
for i ∈ I := {1, . . . , j} such that:

• [ai, bi] ⊂ [0, n[ for all i ∈ I;
• ni := bi − ai > N for all i ∈ I;
• kn := �[0, n[−

⋃
i∈I [ai, bi] < N ′ + εn;

• fol(Aai−1Aai
. . . Abi) �= fol(Aai

Aai
. . . Abi).

This is done as follows. We put a0 := n and we define by induction for i ≥ 1:

bi := max
{
k ∈ [0, ai−1], σkA ∈ {rN < N ′}

}
,

ai := bi − rN (σbiA).

We stop the process at the last integer j satisfying bj − rN (σbiA) ≥ 0. Finally we
put bj+1 = 0.

Let μ = π∗ν ∈ M([0, 1], f). We remark that h(f, μ) = h(σ, ν) > 0 by Propo-
sition 2 and that μ(π(B)) > 1 − ε. We will denote by λμ :=

∫
log |f ′|(x)dμ(x)

the Lyapunov exponent of μ. We consider a (δ, n) separated set F ⊂ π(B) with
maximal cardinality. For any x ∈ F we choose A ∈ B with x = π(A) and we let
ai(x) = ai(A), bi(x) = bi(A) and kn(x) = kn(A).
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Claim. Up to dividing the cardinality of F by eφ(ε,N) for some function φ satisfying

φ(ε,N)
ε→0,

N→+∞−−−−−→ 0, one can assume ai(x), bi(x) independent of x ∈ F and thus
kn(x), but also lk(x) := [− log− |f ′(fkx)|] + 1 for k /∈

⋃
i∈I ]ai, bi] (the symbol

[.] denotes the usual integer part of a real number and log− = min(log, 0) is the
negative part of the logarithm).

Proof of the Claim. For points in a set of arbitrarily large μ-measure and large n
we have by ergodicity

1

n

∑
k/∈

⋃
i∈I ]ai,bi]

[− log− |f ′(fkx)] + 1 ≤ S := −
∫

log− |f ′|(x)dμ(x) + 2.

This last integral is finite, more precisely less than log+ ‖f ′‖∞, because we have
λμ =

∫
log |f ′|(x)dμ(x) ≥ h(f, μ) > 0 by Ruelle inequality. Recall also that kn :=

�[0, n[−
⋃

i∈I [ai, bi] < N ′+ εn. Therefore the number of possible sequences (lk(x))k

with k ∈ [0, n[−
⋃

i∈I [ai, bi] and for x ∈ F is less than

(
nS

kn

)
and thus by Stirling’s

formula grows exponentially as nSH( kn

nS ) with H(t) = −t log t− (1− t) log(1− t).

Our Claim then follows from limt→0 H(t) = 0 and lim supn
kn

nS ≤ ε. �
Now by Lemma 4.1 of [10] (see also Lemma 3 of [2] for an alternative proof)

the number of elements of P , that is, the number of monotone branches where

the absolute value of f ′ at some point exceeds e−l, is less than ce
l

r−1 for any
l ∈ N, where c is some constant depending only on f . For any k /∈

⋃
i∈I ]ai, bi],

the set fkF meets at most 2ce
lk

r−1 monotone branches for fLk with Lk = ni + 1
if k = ai for some i ∈ I and Lk = 1 if not and with lk the common value of the
function lk in F , i.e. lk = lk(x) for any x ∈ F . Indeed for any x = π(A) ∈ F
we have fol(Aai−1Aai

. . . Abi) �= fol(Aai
Aai

. . . Abi), and thus there exists y in the
boundary of Aai

such that f t−aiy ∈ At for t = ai, . . . , bi. Therefore faix belongs
to the monotone branch for fni+1 given by Aai

, . . . , Abi if and only if so does one of
the two boundary points of Aai

. Finally recall that the number of possible intervals

Aai
∈ P is at most ce

lai
r−1 .

4. Proof of the Main Theorem

We will first prove that an ergodic measure with the shadowing property has
zero entropy.

Proposition 3. Let f : [0, 1] → R be a Cr interval map with r > 1 and let
Σ(f, P ) be the symbolic dynamics associated to the natural partition as defined in
Section 2.2. For any ergodic σ-invariant probability measure ν on Σ(f, P ) satisfying
the shadowing property we have

h(f, π∗ν) = 0.

This last proposition improves, in the case of Cr maps with r > 1, Theorem 6.1
of [5], which holds for C1 maps but asserts only that h(f, μ) ≤ htop(C). Together
with Proposition 2 and Lemma 2 we get:

Corollary 1. The projection π : ΣM (f, P ) → [0, 1] induces a bijection between
ergodic invariant measures of (ΣM (f, P ), σ) and ([0, 1], f) with positive entropy,
which is entropy preserving.
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Finally we asymptotically bound from above the entropy of a sequence of ergodic
σ-invariant measures satisfying the shadowing property.

Proposition 4. Let (νm)m be a sequence of ergodic σ-invariant measures on Σ(f, P )
satisfying the shadowing property. Then we have for any weak limit μ := limk μmk

of (μm)m with μm = π∗νm:

lim sup
k

h(f, μmk
) ≤

∫
log+ |f ′|dμ

r
.

Together with Theorem 1, Lemma 1, Lemma 3 and Corollary 1 we easily get as
a consequence:

Corollary 2. The projection π : Σ(D) → [0, 1] induces a bijection π∗ preserving
entropy between ergodic invariant measures of (Σ(D), σ) and ([0, 1], f) with entropy

larger than log ‖f ′‖∞
r .

We will prove Proposition 3 and Proposition 4 later. We first deduce the Main
Theorem from these propositions.

Proof of the Main Theorem. We consider a Cr (r > 1) interval map, f : [0, 1] →
[0, 1], such that htop(f) > log ‖f ′‖∞

r . We argue by contradiction: assume f does
not admit a maximal measure or admits an infinite number of ergodic maximal
measures; then it also does for the Markov shift (Σ(D), σ) according to Corollary 2.
Moreover htop(f) = h(G). Therefore by Proposition 1, there exists a sequence
(ξm)m of ergodic σ-invariant measures on Σ(D) such that limm h(σ, ξm) = htop(f)
and such that for any finite set of vertices F we have limm ξm([F ]) = 0. It follows
from Proposition 1 that limm ξm([DN ]) → 0 for all N ∈ N, and the sequence
(νm)m = (π∗ξm)m of induced measures on Σ(f, P ) therefore satisfies the shadowing
property according to Lemma 3. Finally we conclude by Proposition 4 by writing

(π∗νm)m = (μm)m such that lim supm h(f, μm) = lim supm h(σ, ξm) ≤ log ‖f ′‖∞
r ,

which contradicts the assumption htop(f) >
log ‖f ′‖∞

r . �

We now proceed to the proofs of Proposition 3 and Proposition 4.

Proof of Proposition 3. We consider an ergodic σ-invariant measure ν on Σ(f, P )
with the shadowing property and h(σ, ν) > 0. Let μ := π∗ν. Fix δ > 0 and let us
prove h1/2(f, μ, δ) < δ. As λμ ≥ h(μ) > 0 the function log |f ′| is integrable with
respect to μ, and therefore one can choose a large integer K such that

− 1

r − 1

∫
|f ′|<e−K

(log |f ′| − 1) dμ < δ/4.

Let PK := {A ∈ P, supx∈A |f ′(x)| ≥ e−K}. We now choose 1
2 > ε > 0 andN ∈ N

such that φ(ε,N) < δ/4,
(
δ−1c�PK

)ε
< eδ/4 and −x log x < δ/4 for all 0 < x < 2ε.

As ν satisfies the shadowing property we have ν({rN < +∞}) = 1. Let F , B,
(ai),. . . be the data associated to the triple (ν,N, ε) as in the end of Section 3. Let
Kn = {k /∈

⋃
i∈I ]ai, bi], lk > K}. By taking a smaller set B one can assume by

ergodicity that 1
n

∑
k∈Kn

lk
r−1 < δ/4 for large enough n. Let Eδ = 2δN ∩ [0, 1]. For

any k /∈
⋃

i∈I ]ai, bi] the set Fk :=
⋃

0≤l<Lk
(Ak,...,Ak+Lk−1)

f |−l
Ak+l

Eδ, where the union is

over all monotone branches
⋂

0≤l<Lk
f−lAk+l for f

Lk intersecting fkF , is a (δ, Lk)
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covering set of fkF by a standard argument. Therefore F may be (2δ, n) covered
by at most

∏
k �Fk points, and then we have for some constant C:

r(n, 3δ, π(B)) ≤ r(n, 2δ, F )

≤ eφ(ε,N)n
∏
k

�Fk

≤ eφ(ε,N)nδ−kn

∏
k

Lk

∏
k∈Kn

ce−
lk

r−1

∏
k/∈Kn

�PK

≤ Ceφ(ε,N)n(δ−1c�PK)εne−
∑

k∈Kn
lk

r−1

∏
k

Lk.

By assumption the terms eφ(ε,N)n, (δ−1c�PK)εn and e−
∑

k∈Kn
lk

r−1 are all less than

eδn/4. Now by the arithmetic mean-geometric mean inequality we have (
∏

k Lk)
1/kn

≤
∑

k Lk

kn
≤ n

kn
, and therefore for large n we get by the choice of ε:

1

n
log

∏
k

Lk ≤ −kn
n

log

(
kn
n

)
< δ.

By using Katok’s definition of entropy recalled in the introduction we finally
conclude that h1/2(f, μ, δ) < δ. �

Proof of Proposition 4. Let ε > 0 and N ∈ N. For m large enough we have
νm({rN < +∞}) > 1 − ε. We can also clearly assume h(σ, νm) > 0. Let F ,
B, (ai),. . . be the data associated as above to the triple (νm, N, ε). The set F

meets at most c2(εn+N ′)
∏

k e
− lk

r−1 monotone branches for fn. As at most n/δ
(n, δ)-separated points may lie in the same monotone branch for fn for any δ > 0,
we have

s(n, δ, π(B)) = �F

≤ n

δ
eφ(ε,n)nc2(εn+N ′)

∏
k

e−
lk

r−1

≤ n

δ
eφ(ε,n)nc2(εn+N ′)e

∫
− log |f′|−(x)dμm(x)

r−1 .

Then by using Katok’s entropy formula we get up to changing φ(ε,N):

h(f, μm) ≤
∫
− log |f ′|−(x)dμm(x)

r − 1
+ φ(ε,N)

≤
∫
log+ |f ′|(x)dμm(x)− λμm

r − 1
+ φ(ε,N).

But we also have by Ruelle inequality h(f, μm) ≤ λμm
. By combining these two

inequalities we get

h(f, μm) ≤ r − 1

r
h(f, μm) +

1

r
λμm

≤
∫
log+ |f ′|(x)dμm(x)

r
+ φ(ε,N).
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Then by taking the lim sup in m and the limits in ε and N we get by upper
semicontinuity of ξ �→

∫
log+ |f ′|(x)dξ(x):

lim sup
m

h(f, μm) ≤
∫
log+ |f ′|(x)dμ(x)

r
.

�

5. Nonupper semicontinuity of the entropy function

This section deals with the properties of upper semicontinuity of the entropy
function for Cr interval maps f : [0, 1] → [0, 1]. To simplify the notation we let h(.)
for h(f, .). We consider the defect

...
h of upper semicontinuity defined as follows:

∀μ ∈ M(X, f),
...
h (μ) = lim sup

ν→μ
h(ν)− h(μ).

Following Y. Yomdin [19] it was proved by J. Buzzi [6] that for Cr (r ≥ 1) maps
f on a compact manifold X of dimension d:

...
h ≤ d log ‖f ′‖∞

r
.(1)

The author has refined this inequality in [1] at the measure theoretical level as

follows:
...
h ≤ d λ+

r , where λ is the maximal Lyapunov exponent. For one dimen-
sional maps the works of T. Downarowicz and A. Maass [10] on symbolic exten-
sions give another proof of this inequality (without referring to Yomdin’s theory
and semi-algebraic tools) but also allow us to estimate the entropy of measures
with a large defect. We state this remark as a corollary of the Antarctic theorem
of T. Downarowicz and A. Maass [10].

Corollary 3. Let f be a Cr interval map with r ≥ 1. For any μ ∈ M([0, 1], f) we

let aμ ∈ [0, 1] be such that
...
h (μ) = aμ

λμ

r . Then

h(μ) ≤ (1− aμ)λ
+
μ .(2)

In particular a measure μ at which the defect is “maximal”, aμ = 1, has zero
entropy.

Let us explain in more detail how the above corollary follows from the Antarctic
theorem. In [10] the authors study the convergence of entropy structures (hk). Such
a sequence is a nondecreasing sequence of functions converging pointwise to the
entropy function in some specific way (we refer to the book [9] for further details).
One may choose the functions hk to be upper semicontinuous. The Antarctic
theorem then states that

lim
k

(
h− hk +

λ+

r − 1

)...

= 0.(3)

We now explain how Corollary 3 follows from the above estimate.

Proof of Corollary 3. Together with the triangular inequality, (f + g)... ≤
...
f +

...
g ,

we get by upper semicontinuity of hk:(
h+

λ+

r − 1

)...

= 0.
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Now consider a sequence (νn)n of invariant measures such that limn h(νn) =
...
h + h(μ) = aμ

λ+
μ

r + h(μ). Then we conclude with the Ruelle inequality that

h(μ) +
λ+
μ

r − 1
≥ lim sup

n

(
h(νn) +

λ+
νn

r − 1

)

≥
(
1 +

1

r − 1

)
lim
n

h(νn),

(r − 1)h(μ) + λ+
μ ≥ aμλ

+
μ + rh(μ),

that is,

(1− aμ)λ
+
μ ≥ h(μ).

�

Remark 1. The estimate (3) holds true for Cr (r > 1) surface diffeomorphisms [4],
and therefore so does Corollary 3.

We review now some situations where upper semicontinuity of the entropy may
fail. A classical criteria to ensure the existence of maximal measures is the upper
semicontinuity of the entropy function. But this does not hold for general Cr maps,
as shown by the example produced in [6]. In this example the Dirac measure at

the fixed point 0 is a limit of ergodic measures (μn)n with entropy log ‖f ′‖∞
r > 0.

One can easily modify this example to get a map with the same property but also
admitting an invariant measure with h(μ) � log ‖f ′‖∞ (see for example [3]). Then
for any a ∈ [0, 1] we have with νn = aδ0 + (1− a)μn:

...
h (aδ0 + (1− a)μ) ≥ lim sup

n
h(νn)− h(aδ0 + (1− a)μ)

≥ a
log ‖f ′‖∞

r
.

This proves that inequality (2) obtained in the above corollary is sharp because
h(aδ0+(1−a)μ) � (1−a) log ‖f ′‖∞. In particular entropy may not be upper semi-
continuous even at large entropy measures. In the previous example the sequence
(νn)n and its limit are not ergodic.

We present now a similar example where the sequence (νn)n is ergodic (but
not its limit). We just outline the construction. To simplify the exposition the
parameter aμ will be equal to 1

2 ; i.e. for any r > 1 we will exhibit an example with
a sequence (νn) of ergodic invariant measures converging to some invariant measure

μ such that h(μ) = log ‖f ′‖∞
2 and lim supn h(νn) =

log ‖f ′‖∞
2

(
1 + 1

r

)
.

We consider a Cr interval map f as follows. The point 0 is a repulsing fixed
point, f ′(0) = ‖f ′‖∞ = 2 and f is linear close to zero. Moreover there exist disjoint
intervals of monotonicity (J0, J1, I

1
n, . . . , I

Nn
n , n ∈ N) such that:

• f(J0) = f(J1) covers the union U of all these intervals;
• each interval Ikn for k ≤ Nn is n times successively expanded near 0 and
fnIkn also covers U ;

• limn
logNn

n = log f ′(0)
r .

Such a map can be built by adapting the construction in [17] and [3]. We skip
the technical details and we refer these papers to the interested reader.
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The collection of intervals
⋂n−1

l=0 f−lJi
⋂2n−1

l=n f−lIjn for i = 1, 2 and j = 1, . . . , Nn

defines a 2n-horseshoe; i.e. the corresponding compact invariant set for f2n is
conjugated to a full shift with 2nNn symbols. Let νn be the maximal entropy
invariant measure carried by this horseshoe. The sequence (νn)n is converging to
1
2 (δ0 + μ) where μ is supported by the horseshoe defined by J0 and J1, in particular
h(μ) ≤ log 2. We therefore have

lim
n

h(νn) =
log ‖f ′‖∞

2

(
1 +

1

r

)
and h(lim

n
νn) ≤

log ‖f ′‖∞
2

.

As already said the limit however is not ergodic. It leads to the following open
question:

Question. Is the entropy function of a Cr interval map with r > 1 upper semicon-
tinous at ergodic measures with positive entropy?

References
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