RESCALED ENTROPY OF CELLULAR AUTOMATA

DAVID BURGUET

Abstract

For a d-dimensional cellular automaton with $d \geq 1$ we introduce a rescaled entropy which estimates the growth rate of the entropy at small scales by generalizing previous approaches $[1,9]$. We also define a notion of Lyapunov exponent and proves a Ruelle inequality as already established for $d=1$ in [20, 18]. Finally we generalize the entropy formula for 1-dimensional permutative cellular automata [21] to the rescaled entropy in higher dimensions. This last result extends recent works [19] of Shinoda and Tsukamoto dealing with the metric mean dimensions of two-dimensional symbolic dynamics.

1. Introduction

In this paper we estimate the dynamical complexity of multidimensional cellular automata. In the following the main results will be stated in a more general setting, but let us focus in this introduction on the following algebraic cellular automaton on $\left(\mathbb{F}_{p}\right)^{\mathbb{Z}^{d}}$ with p prime given for some finite family $\left(a_{i}\right)_{i \in I}$ in $\mathbb{F}_{p}^{*}, I \subset \mathbb{Z}^{d}$, by

$$
\forall\left(x_{j}\right)_{j} \in\left(\mathbb{F}_{p}\right)^{\mathbb{Z}^{d}}, f\left(\left(x_{j}\right)_{j}\right)=\left(\sum_{i \in I} a_{i} x_{i+j}\right)_{j}
$$

Let $I^{\prime}=I \cup\{0\}$. For $d=1$ the topological entropy of f is finite and equal to $\operatorname{diam}\left(I^{\prime}\right) \log p$ where $\operatorname{diam}\left(I^{\prime}\right)$ denotes the diameter of I^{\prime} for the usual distance on \mathbb{R} [21]. However in higher dimensions the topological entropy of f is always infinite unless $I=\{0\}[15,10]$. Moreover the topological entropy of the $\mathbb{N} \times \mathbb{Z}^{d}$-action given by f and the shift vanishes. It was expected that the topological entropy of any cellular automaton for $d>1$ was either zero or infinity, but T. Meyerovitch built a two-dimensional counterexample [13].

In this paper we investigate the growth rate of $\left(h_{t o p}\left(f, \mathrm{P}_{J_{n}}\right)\right)_{n}$ for nondecreasing sequences $\left(J_{n}\right)$ of convex subsets of \mathbb{R}^{d} where $\left(\mathrm{P}_{J_{n}}\right)_{n}$ denotes the clopen partitions into $J_{n} \cap \mathbb{Z}^{d}$ coordinates. This sequence appears to increase as the perimeter $p\left(J_{n}\right)$ of J_{n}. We define the rescaled entropy $h_{\text {top }}^{d}(f)$ of f as $\lim \sup _{J_{n}} \frac{h_{\text {top }}\left(f, \mathrm{P}_{J_{n}}\right)}{p\left(J_{n}\right)}$. In [9] another renormalization is used, whereas in [1] the authors only investigate the case of squares $J_{n}=[-n, n]^{2}, n \in \mathbb{N}$. For $d=1$ we get $h_{\text {top }}^{1}(f)=\frac{h_{\text {top }}(f)}{2}$. We generalize the entropy formula for algebraic cellular automata as follows :
Theorem 1. Let f be an algebraic cellular automaton on $\left(\mathbb{F}_{p}\right)^{\mathbb{Z}^{d}}$ as above, then

$$
h_{t o p}^{d}(f)=R_{I^{\prime}} \log p
$$

where $R_{I^{\prime}}$ denotes the radius of the smallest bounding sphere containing I^{\prime}.
In fact we establish such a formula for any permutative cellular automaton (see Section 7). In [19] the authors compute, inter alia, the metric mean dimension of the horizontal shift in \mathbb{Z}^{2} for some standard distances. These dimensions may be interpreted as the rescaled entropy

Date: June 2018.
2010 Mathematics Subject Classification. 37B15, 37A35, 52C07.
with respect to some particular sequence of convex sets $\left(J_{n}\right)_{n}$. In particular we extend these results in higher dimensions for general permutative cellular automata.

We also consider a measure theoretical analogous quantity of the rescaled entropy. In dimension one, a notion of Lyapunov exponent has been defined in [18]. Then Tisseur [20] proved in this case a Ruelle inequality relating this exponent with the Kolmogorov-Sinai entropy. In this paper we also introduce a notion of Lyapunov exponent in higher dimensions, which bounds from above the rescaled entropy of measures.

The paper is organized as follows. In Section 2 we state some measure geometrical properties of convex sets in \mathbb{R}^{d}. We estimate the cardinality of integer points in the morphological boundary of large convex sets in Section 3. We recall the dynamical background of cellular automata in Section 4 and we introduce then a Lyapunov exponent for multidimensional cellular automata. In Section 5 we define and study the topological and measure theoretical rescaled entropy. We prove the Ruelle type inequality in Section 6. Section 7 is devoted to the proof of the entropy formula for permutative cellular automata. Finally we discuss in the last section a generalization of the rescaled entropy for any endomorphism of a \mathbb{Z}^{d}-action.

2. Background on convex geometry

2.1. Convex bodies, domains and polytopes. For a fixed positive integer d we endow the vector space \mathbb{R}^{d} with its usual Euclidean structure. The associated scalar product (resp. norm) is simply denoted by • (resp. $\left\|\|\right.$) and we let \mathbb{S}^{d-1} be the unit sphere. For a subset F of \mathbb{R}^{d} we let $\bar{F}, \operatorname{Int}(F)$ and ∂F be respectively its closure, interior set and boundary. We let $\sharp F$ be the number of integer points in F, i.e. $\sharp F=\left|F \cap \mathbb{Z}^{d}\right|$. We also denote by $V(F)$ the d-Lebesgue measure of F (also called the volume of F) when the set F is Borel.

The extremal set of a convex set J is denoted by $\operatorname{ex}(J)$ and the convex hull of $F \subset \mathbb{R}^{d}$ by $\operatorname{cv}(F)$. A convex body is a compact convex set of \mathbb{R}^{d}. A convex body containing the origin $0 \in \mathbb{R}^{d}$ in its interior set is said to be a convex domain. The set of convex bodies endowed with the Hausdorff topology is a locally compact metrizable space. In the following we denote by \mathcal{D} the set of convex domains endowed with the Hausdorff topology. A convex polytope (resp. k-polytope with $k \leq d$) in \mathbb{R}^{d} is a convex body given by the convex hull of a finite set (resp. with topological dimension equal to k). When this finite set lies inside the lattice \mathbb{Z}^{d}, the convex polytope is said integral. We let $\mathcal{F}(P)$ be the set of faces of a convex d-polytope P.

A convex domain J has Lipshitz boundary and finite perimeter $p(J)$. We let \mathcal{D}^{1} be the subset of \mathcal{D} given by convex domains with unit perimeter. We denote by $\widetilde{J}=p(J)^{-\frac{1}{d-1}} \in \mathcal{D}^{1}$ the normalization of a convex domain J. For convex domains the perimeter in the distributional sense of De Giorgi coincides with the $(d-1)$-Hausdorff measure \mathcal{H}_{d-1} of the boundary. For $J \in \mathcal{D}$ we let $\partial^{\prime} J$ be the subset of points $x \in \partial J$, where the tangent space $T_{x} J$ is well defined. The set $\partial^{\prime} J$ has full \mathcal{H}_{d-1}-measure in ∂J. We let $N^{J}(x) \in \mathbb{S}^{d-1}$ be the unit J external normal vector at $x \in \partial^{\prime} J$. For any $x \in \partial^{\prime} J$ we let $T_{x}^{+} J$ (resp. $T_{x}^{-} J$) be the open external (resp. closed internal) semi-space with boundary $T_{x} J$. With these notations we have $J=\bigcap_{x \in \partial^{\prime} J} T_{x}^{-} J$. For $\epsilon \in \mathbb{R}$ we denote by $T_{x}^{ \pm} J(\epsilon)$ the semi-planes $T_{x}^{ \pm} J(\epsilon)=T_{x}^{ \pm} J+\epsilon N^{J}(x)$. When J is a convex d-polytope and $F \in \mathcal{F}(J)$, we write T_{F} to denote the tangent affine space supporting $F, T_{F}^{ \pm}$for the associated semi-spaces and N^{F} for the unit external normal to F.

The support function of a convex body I is the real continuous function h_{I} on \mathbb{S}^{d-1} :

$$
\forall x \in \mathbb{S}^{d-1}, h_{I}(x)=\max _{u \in I} u \cdot x
$$

The support function completely characterizes the convex body I. The area measure σ_{J} of a convex domain J is the Borel measure on \mathbb{S}^{d-1} given by $N_{*}^{J} \mathcal{H}_{d-1}$:

$$
\forall B \text { Borel of } \mathbb{S}^{d-1}, \sigma_{J}(B)=\mathcal{H}_{d-1}\left(\left(N^{J}\right)^{-1} B\right)
$$

If a sequence $\left(J_{n}\right)_{n}$ in \mathcal{D} is converging to $J_{\infty} \in \mathcal{D}$ (for the Hausdorff topology), then $\sigma_{J_{n}}$ is converging weakly to $\sigma_{J_{\infty}}$, in particular the perimeter of J_{n} goes to the perimeter of J_{∞} (see Proposition 10.2 in [7]). Consequently, \mathcal{D}^{1} is a closed subset of \mathcal{D}.
2.2. Convex exhaustions. An exhaustion is a sequence $\mathcal{J}=\left(J_{n}\right)_{n \in \mathbb{N}}$ of subsets of \mathbb{R}^{d} satisfying $\bigcup_{n} J_{n}=\mathbb{R}^{d}$. In this paper we consider exhaustions $\mathcal{J}=\left(J_{n}\right)_{n \in \mathbb{N}}$ of convex domains with $p\left(J_{n}\right) \xrightarrow{n}+\infty$, such that the sets $\widetilde{J_{n}}=p\left(J_{n}\right)^{-\frac{1}{d-1}} J_{n} \in \mathcal{D}^{1}$ are converging to a limit $J_{\infty} \in \mathcal{D}$ in the Hausdorff topology. Then the limit J_{∞} has unit perimeter. The sequences $\mathcal{J}=\left(J_{n}\right)_{n}$ satisfying the above properties are said to be convex exhaustions. For $O \in \mathcal{D}^{1}$ we denote by $\mathcal{E}(O)$ the set of convex exhaustions $\mathcal{J}=\left(J_{n}\right)_{n}$ with $J_{\infty}=O$. Moreover for $O \in \mathcal{D}$ we let $\mathcal{J}_{O} \in \mathcal{E}(\widetilde{O})$ be the convex exhaustion given by $\mathcal{J}_{O}:=(n O)_{n}$.

The inner radius $r(E)$ of a subset E of \mathbb{R}^{d} is the largest $a \geq 0$ such that E contains a Euclidean ball of radius a. For two subsets E and F of \mathbb{R}^{d} we let $E \Delta F$ be the symmetric difference of E and F given by $E \Delta F:=(E \backslash F) \cup(F \backslash E)$.
Lemma 1. Let $O \in \mathcal{D}$ and $\mathcal{J}=\left(J_{n}\right)_{n} \in \mathcal{E}(O)$. Then any sequence of convex bodies $\mathcal{K}=$ $\left(K_{n}\right)_{n}$ with $r\left(K_{n} \Delta J_{n}\right)=o\left(p\left(J_{n}\right)^{\frac{1}{d-1}}\right)$ belongs to $\mathcal{E}(O)$ and $p\left(K_{n}\right) \sim^{n} p\left(J_{n}\right)$.
Proof. We claim that $p\left(J_{n}\right)^{-\frac{1}{d-1}} K_{n}$ is converging to J_{∞} in the Hausdorff topology. Then by taking the perimeter in this limit we get $\lim _{n} \frac{p\left(K_{n}\right)}{p\left(J_{n}\right)}=p\left(J_{\infty}\right)=1$ and therefore $\widetilde{K_{n}}=$ $p\left(K_{n}\right)^{-\frac{1}{d-1}} K_{n}$ also goes to $J_{\infty}=O$. Let us prove now the claim. Fix an Euclidean ball B with $J_{\infty} \subset \operatorname{Int} B$. It is enough to show that $p\left(J_{n}\right)^{-\frac{1}{d-1}} K_{n} \cap B$ is converging to J_{∞}. Indeed as K_{n} is convex, this will imply that $p\left(J_{n}\right)^{-\frac{1}{d-1}} K_{n}$ is contained in B for n large enough (if not $p\left(J_{n}\right)^{-\frac{1}{d-1}} K_{n} \cap \partial B$ is non empty for infinitely many n and therefore we should have $J_{\infty} \cap \partial B \neq \emptyset$). By extracting a subsequence we may assume $p\left(J_{n}\right)^{-\frac{1}{d-1}} K_{n} \cap B$ is converging to a convex body K_{∞} and we need to prove $K_{\infty}=J_{\infty}$. We argue by contradiction. As J_{∞} is a convex domain, we have either $\operatorname{Int}\left(J_{\infty}\right) \backslash K_{\infty} \neq \emptyset$ or $\operatorname{Int}\left(K_{\infty}\right) \backslash J_{\infty} \neq \emptyset$. But for x in one of these sets, there is $s>0$ such that the balls $p\left(J_{n}\right)^{\frac{1}{d-1}} B(x, s)$ are contained in $K_{n} \Delta J_{n}$, therefore $r\left(K_{n} \Delta J_{n}\right) \geq s p\left(J_{n}\right)^{\frac{1}{d-1}}$, for n large enough.
Remark 2. If $\sharp K_{n} \Delta J_{n}=o\left(p\left(J_{n}\right)^{\frac{d}{d-1}}\right)$ then the condition on the inner radius in Lemma 1 holds and therefore \mathcal{K} belongs to $\mathcal{E}(O)$.
2.3. Internal and external morphological boundary. We recall some terminology of mathematical morphology used in image processing. For two subsets I and J of \mathbb{R}^{d}, the dilation (also known as the Minkowski sum) $J \oplus I$ and the erosion $J \ominus I$ of J by I are defined as follows

$$
\begin{aligned}
& J \oplus I=\{i+j \mid i \in I \text { and } j \in J\} \\
& J \ominus I=\left\{j \in \mathbb{R}^{d} \mid \forall i \in I, i+j \in J\right\}
\end{aligned}
$$

When the origin 0 belongs to I then we have $J \subset J \oplus I$ and $J \ominus I \subset J$. When J is a convex body then $J \ominus I$ is a convex body. Assume now that I is also a convex body. The dilation $J \oplus I$ is then also a convex body with $\operatorname{ex}(J \oplus I) \subset \operatorname{ex}(I) \oplus \operatorname{ex}(J)$. In particular, when I and J are moreover convex polytopes, then so is $J \oplus I$. We have $J \ominus I=\bigcap_{x \in \partial^{\prime} J} T_{x}^{-} J\left(h_{I}\left(-N^{J}(x)\right)\right)$ (also $J \oplus I \subset \bigcap_{x \in \partial^{\prime} J} T_{x}^{-} J\left(h_{I}\left(N^{J}(x)\right)\right)$, but this last inclusion may be strict). When J is a convex polytope, the above intersection is finite, thus $J \ominus I$ is also a convex polytope. The convex bodies given by the erosion $J \ominus I$ and the dilation $J \oplus I$ are also known as the inner and outer parallel bodies of J relative to I. We recall that $h_{J \oplus I}=h_{J}+h_{I}$. In particular when $I=\{i\}$ is a singleton, we get $h_{J+i}(x)=h_{J}(x)+i \cdot x$ for all $x \in \mathbb{S}^{d-1}$. In general we only have $h_{J \ominus I} \leq h_{J}-h_{I}$.

The internal and external (morphological) boundaries of J relative to I denoted respectively by $\partial_{I}^{-} J$ and $\partial_{I}^{+} J$ are given by

$$
\begin{aligned}
& \partial_{I}^{+} J=(I \oplus J) \backslash J \\
& \partial_{I}^{-} J=J \backslash(J \ominus I) .
\end{aligned}
$$

Clearly we have $\partial_{I}^{ \pm} J=\partial_{I^{\prime}}^{ \pm} J$ with $I^{\prime}=I \cup\{0\}$. When J is a convex domain then we have $\partial_{I}^{-} J=\partial_{\mathrm{cv}(I)}^{-} J$ and $\partial_{I}^{+} J \subset \partial_{\mathrm{cv}(I)}^{+} J$. In the following the set I will be fixed so that we omit the index I in the above definitions when there is no confusion.

Finally we observe that $r\left(J_{n} \Delta\left(J_{n} \oplus I\right)\right), r\left(J_{n} \Delta\left(J_{n} \ominus I\right)\right) \leq \operatorname{diam}\left(I^{\prime}\right)$. Therefore it follows from Lemma 1, that if $\left(J_{n}\right)_{n}$ is a convex exhaustion and I a convex body then $\left(J_{n} \ominus I\right)_{n}$ and $\left(J_{n} \oplus I\right)_{n}$ define convex exhaustions with the same limit as $\left(J_{n}\right)_{n}$.

3. Counting integer points in morphological boundary of large convex sets

For a large convex domain J and a fixed integral polytope I we estimate the cardinality of the integer points in the morphological boundaries of J relative to I.
3.1. First relative quermass integral. Let O be a convex domain and let I be a convex body. For $\rho \in \mathbb{R}$ we let

$$
O_{\rho}=\left\{\begin{array}{l}
O \oplus \rho I \text { when } \rho \geq 0 \\
O \ominus \rho I \text { when } \rho<0
\end{array}\right.
$$

Proposition 3.

$$
\lim _{\rho \rightarrow 0} \frac{V\left(O_{\rho}\right)-V(O)}{\rho}=\int_{\mathbb{S}^{d-1}} h_{I} d \sigma_{O}
$$

For $\rho>0$ the formula follows from Minkowski's formula on mixed volume (see Theorem 6.5 and Corollary 10.1 in [7]). For $\rho<0$ we refer to [12] (see also Lemma 2 in [4] for the 2-dimensional case).

In the following we denote by $V_{I}(O)$ the integral $\int_{\mathbb{S}^{d-1}} h_{I} d \sigma_{O}$. The product $d \cdot V_{I}(O)$ is known as the first I-relative quermass integral of O. For convex bodies $I \subset H$ and $k \in \mathbb{N}$, we have $V_{I}(O) \leq V_{H}(O)$ and $V_{k I}(O)=k V_{I}(O)$ for any convex domain O. The support function h_{I} being continuous, the first I-relative quermass integral of O is continuous with respect to the Hausdorff topology, i.e. if $\left(O_{n}\right)_{n}$ is a sequence of convex domains converging to a convex domain O_{∞} in the Hausdorff topology, then we have

$$
V_{I}\left(O_{n}\right) \xrightarrow{n \rightarrow+\infty} V_{I}\left(O_{\infty}\right)
$$

We deduce now from Proposition 3 an estimate on the volume of the morphological boundary for large convex sets.
Corollary 4. Let I be a convex body containing 0 and let $O \in \mathcal{D}$. Then

$$
V\left(\partial_{I}^{ \pm} n O\right) \sim n^{d-1} \int_{\mathbb{S}^{d-1}} h_{I} d \sigma_{O}
$$

Proof. We only consider the case of the external boundary as one may argue similarly for the internal boundary. For all $n>0$ we have

$$
\begin{aligned}
V\left(\partial_{I}^{+} n O\right) & =V(n O \oplus I)-V(n O) \\
& =n^{d}\left(V\left(O \oplus n^{-1} I\right)-V(O)\right)
\end{aligned}
$$

According to Proposition 3 we conclude that

$$
V\left(\partial_{I}^{+} n O\right) \sim n^{d-1} \int_{\mathbb{S}^{d-1}} h_{I} d \sigma_{O}
$$

3.2. Counting integer points in large convex sets. After Gauss circle problem, counting lattice points in convex sets has been extensively investigated. Let $\mathrm{C}=[0,1]^{d}$. Clearly for any Borel subset K of \mathbb{R}^{d} we have always

$$
\begin{equation*}
\sharp K \leq V(K \oplus \mathrm{C}) \tag{3.1}
\end{equation*}
$$

In the other hand, Bokowski, Hadwiger and Wills have proved the following general (sharp) inequality for any convex domain O [2] :

$$
\begin{equation*}
V(O)-\frac{p(O)}{2} \leq \sharp O \tag{3.2}
\end{equation*}
$$

There exist precise asymptotic estimates of $\sharp x O$ for large $x>0$ for convex smooth domains O having positive curvature, in particular we have in this case $\sharp x O=V(x O)+o\left(x^{d-1}\right)$ [8].
3.3. Estimate of $\sharp \partial_{I}^{ \pm} n O$ for $O \in \mathcal{D}$. For a real sequence $\left(a_{n}\right)_{n}$ and two numbers l and $c>0$ we write $a_{n} \sim l \pm c$ when the accumulation points of $\left(a_{n}\right)_{n}$ lie in $[l-c, l+c]$.

Lemma 2. There exists a constant c depending only on d such that we have for any convex domain $O \in \mathcal{D}$ and any convex body I of \mathbb{R}^{d} with $0 \in I$:

$$
\frac{\sharp \partial_{I}^{ \pm} n O}{n^{d-1}} \sim V_{I}(O) \pm c
$$

Proof. We only argue for $\partial_{I}^{+} n O$, the other case being similar. We have $\sharp \partial_{I}^{+} n O=\sharp n O \oplus I-$ $\sharp n O$, and then by combining Equation (3.1) and (3.2) we get :

$$
V(n O \oplus I)-\frac{p(n O \oplus I)}{2}-V(n O+\mathrm{C}) \quad \leq \sharp \partial_{I}^{+} n O \quad \leq V(n O \oplus I \oplus \mathrm{C})-V(n O)+\frac{p(n O)}{2}
$$

After dividing by n^{d-1}, the right (resp. left) hand side term is going to $\int_{\mathbb{S}^{d-1}}\left(h_{I}-h_{\mathrm{C}}-\right.$ $1 / 2) d \sigma_{O}$ (resp. $\left.\int_{\mathbb{S}^{d-1}}\left(h_{I}+h_{\mathrm{C}}+1 / 2\right) d \sigma_{O}\right)$ according to Corollary 4.
3.4. Upperbound of $\sharp \partial^{-} J_{n}$ for general convex exhaustions. For a subset E of \mathbb{R}^{d} and for $r>0$ we let $E(r):=\{x \in E, d(x, \partial E) \leq r\}$ with d being the Euclidean distance. With the previous notations we may also write $E(r)=\partial_{B_{r}}^{-} E$ where B_{r} denotes the Euclidean ball centered at 0 with radius r.

Lemma 3. For any convex domain J in \mathbb{R}^{d}, we have

$$
V(J(r)) \leq r p(J)
$$

Proof. We first assume that J is a convex d-polytope. Let $x \in J(r)$. There is $F \in \mathcal{F}(\mathrm{~J})$ with $\left\|x-x_{F}\right\| \leq d(x, F)=d(x, \partial J) \leq r$, where x_{F} denotes the orthogonal projection of x onto T_{F}. Observe that x_{F} belongs to F : if not the segment line $\left[x, x_{F}\right]$ would have a non empty intersection with ∂J and the intersection point $y \in \partial J$ would satisfy $\|x-y\|<\left\|x-x_{F}\right\| \leq$ $d(x, \partial J)$. Therefore $J(r) \subset \bigcup_{F \in \mathcal{F}(J)} R_{F}(r)$ with $R_{F}(r):=\left\{x-t N^{F}(x), x \in F\right.$ and $\left.t \in[0, r]\right\}$. Finally we get

$$
\begin{aligned}
V(J(r)) & \leq \sum_{F \in \mathcal{F}(J)} V\left(R_{F}(r)\right) \\
& \leq r p(J)
\end{aligned}
$$

For a general convex domain, there is a nondecreasing sequence $\left(J_{p}\right)_{p}$ of convex d-polytopes contained in J converging to J in the Hausdorff topology. Then the characteristic function of $J_{p}(r)$ is converging pointwisely to the characteristic function of $J(r)$, in particular $V\left(J_{p}(r)\right) \xrightarrow{p}$ $V(J(r))$. Moreover $p\left(J_{p}\right)$ goes to $p(J)$, so that the desired inequality is obtained by taking the limit in the inequalities for the convex d-polytopes J_{p}.

Proposition 5. For any convex exhaustion $\left(J_{n}\right)_{n}$ in \mathbb{R}^{d}, we have

$$
\limsup _{n} \frac{\sharp \partial_{I}^{-} J_{n}}{p\left(J_{n}\right)} \leq \operatorname{diam}\left(I^{\prime}\right)+\sqrt{d} .
$$

Proof. As already observed, we have $\sharp \partial^{-} J_{n} \leq V\left(\partial^{-} J_{n} \oplus \mathrm{C}\right)$ with $\mathrm{C}=[0,1]^{d}$. Let $\left(J_{n}^{\prime}\right)_{n}$ be the sequence given by $J_{n}^{\prime}=J_{n} \oplus \mathrm{C}$ for all n. By Lemma 1 this sequence is a convex exhaustion with $p\left(J_{n}^{\prime}\right) \sim^{n} p\left(J_{n}\right)$. Moreover $\partial^{-} J_{n} \oplus \mathrm{C}$ is contained in $J_{n}^{\prime}(c)$ with $c=\operatorname{diam}\left(I^{\prime}\right)+\operatorname{diam}(\mathrm{C})$. Therefore we conclude according to Lemma 3 :

$$
\begin{aligned}
\sharp \partial^{-} J_{n} & \leq V\left(J_{n}^{\prime}(c)\right), \\
& \leq c p\left(J_{n}^{\prime}\right), \\
& \lesssim^{n} c p\left(J_{n}\right) .
\end{aligned}
$$

Remark 6. We conjecture that $\lim _{n} \frac{\sharp \partial_{I}^{-} J_{n}}{p\left(J_{n}\right)}=V_{I}\left(J_{\infty}\right)$ holds for any convex exhaustion $\left(J_{n}\right)_{n}$ in \mathbb{R}^{d}. We manage to show it only in dimension 2 , but we prefer to omit the proof as such finer estimates are useless in the dynamical applications given in the present paper.
3.5. Supremum of $O \mapsto V_{I}(O)$. In this section we investigate the supremum of V_{I} on \mathcal{D}^{1} for a given convex polytope I of \mathbb{R}^{d}. We recall that there is a unique sphere S_{I} containing I with minimal radius, usually called the smallest bounding sphere of I. We let R_{I} and x_{I} be respectively the radius and the center of S_{I}. There are at least two distinct points in $S_{I} \cap I$, whenever I is not reduced to a singleton, and $S_{I} \cap I \subset \operatorname{ex}(I)$. Moreover we have the following alternative :

- either there is a finite subset of $S_{I} \cap I$ generating an inscribable polytope T with $\operatorname{Int}(T) \ni x_{I}$ (in particular the interior set of I is non empty),
- or there is a hyperplane H containing x_{I} such that I lies in an associated semispace and $S_{I} \cap H$ is the smallest bounding sphere of $I \cap H$.
The smallest bounding sphere S_{I} (or I itself) will be said nondegenerated (resp. degenerated) and an associated polytope T (resp. hyperplane H) is said generating. For an inscribable polytope T in \mathbb{R}^{d} we may define its dual T^{\prime} as the polytope given by the intersection of the inner semispaces tangent to the circumsphere of T at the vertices of T. In the following T^{\prime} always denotes the dual polytope of a generating polytope T with respect to I.

When S_{I} is degenerated, there is a sequence of affine spaces $H=H_{1} \supset H_{2} \supset \cdots H_{l} \ni x_{I}$ such that $I \cap H_{l}$ is nondegenerated in H_{l} and for all $1 \leq i<l$ the convex polytope $I \cap H_{i}$ is degenerated in H_{i} with H_{i+1} as an associated generating hyperplane (H_{i} is a $d-i$ dimensional affine space). We denote by L a generating polytope of $I \cap H_{l}$ in H_{l} and by L^{\prime} its dual polytope in H_{l}. Let U be an isometry of \mathbb{R}^{d} mapping H_{i} for $i=1, \cdots, l$ to $\left\{0_{i}\right\} \times \mathbb{R}^{d-i}$ (where 0_{i} denotes the origin of $\left.\mathbb{R}^{i}\right)$ with $U\left(x_{I}\right)=0$. Then for $R>0$ we let $T_{R}^{\prime}:=U^{-1}\left([-R, R]^{l} \times U\left(L^{\prime}\right)\right)$. The faces F of T_{R}^{\prime} satisfy
(1) either $F=U^{-1}\left([-R, R]^{l} \times U(\mathrm{~F})\right)$ for some face F of L^{\prime},
(2) or $F=U^{-1}\left([-R, R]^{l-1} \times\{ \pm R\}_{i} \times U\left(L^{\prime}\right)\right)$ for $i=1, \cdots, l$ (where $\{ \pm R\}_{i}$ coresponds to the $i^{\text {th }}$ coordinate of the product).
For $i=1,2$ we let $\mathcal{F}_{i}\left(T_{R}^{\prime}\right)$ be the subset of $\mathcal{F}\left(T_{R}^{\prime}\right)$ given by the faces of the $i^{\text {th }}$ category.
Observe that when x_{I} coincides with the origin then T^{\prime} or $T_{R}^{\prime}, R>0$ are convex domains.

Proposition 7.

$$
\sup _{O \in \mathcal{D}^{1}} V_{I}(O)=R_{I}
$$

The supremum of V_{I} is achieved if and only if S_{I} is nondegenerated. The supremum is then achieved at $\widetilde{T^{\prime}}$ with T^{\prime} being the dual polytope of a generating polytope T.

Proof. For any $v \in \mathbb{R}^{d}$ we have

$$
\begin{aligned}
V_{I+v}(O) & =\int h_{I+v} d \sigma_{O} \\
& =\int h_{I} d \sigma_{O}+\int_{\mathbb{S}^{d-1}} v \cdot u d \sigma_{O}(u) \\
& =\int h_{I} d \sigma_{O}+\int_{\partial O} v \cdot N^{O} d \mathcal{H}_{d-1}
\end{aligned}
$$

By the divergence formula we have $\int_{\partial O} v \cdot N^{O} d \mathcal{H}_{d-1}=0$ for any $v \in \mathbb{R}^{d}$ and $O \in \mathcal{D}^{1}$. Therefore we may assume $x_{I}=0$. With the above notations we have $\max _{u \in I} u \cdot v \leq R_{I}$ for all $v \in \mathbb{R}^{d}$ with $\|v\|=1$ with equality iff v belongs to $R_{I}^{-1} I$. Therefore $V_{I}(O) \leq R_{I}$ for any $O \in \mathcal{D}^{1}$. Moreover if the equality occurs then for x in a subset E of ∂O with full $\mathcal{H}_{d-1^{-}}$ measure, $h_{I}\left(N^{O}(x)\right)=\max _{u \in I} u \cdot x=R_{I}$ and therefore the normal unit vector $N^{O}(x)$ belongs to $R_{I}^{-1} I$. But as O is a convex domain, we may find $d+1$ points x_{1}, \cdots, x_{d+1} in E in such a way the origin belongs to the interior of the simplex $T=R_{I} \mathrm{cv}\left(N^{O}\left(x_{1}\right), \cdots, N^{O}\left(x_{d+1}\right)\right)$. Thus S_{I} is nondegenerated and the polytope T is a generating polytope with respect to I. Moreover we have with the above notations

$$
\int h_{I} d \sigma_{T^{\prime}}=R_{I} p\left(T^{\prime}\right)
$$

Therefore $\widetilde{T^{\prime}}$ achieves the supremum of V_{I} on \mathcal{D}^{1}. We consider now the degenerated case. With the above notations, we have $h_{I}\left(N^{F}\right)=R_{I}$ for any $F \in \mathcal{F}_{1}\left(T_{R}^{\prime}\right)$ (recall we assume $x_{I}=0$ without loss of generality). Moreover $\mathcal{H}_{d-1}\left(\bigcup_{F \in \mathcal{F}_{2}\left(T_{R}^{\prime}\right)} F\right)=o\left(p\left(T_{R}^{\prime}\right)\right)$ when R goes to infinity. Therefore the renormalization $\widetilde{T_{R}^{\prime}} \in \mathcal{D}^{1}$ of T_{R}^{\prime} satisfies

$$
V_{I}\left(\widetilde{T_{R}^{\prime}}\right) \xrightarrow{R \rightarrow+\infty} R_{I}
$$

4. Cellular automata

4.1. Definitions. We consider a finite set \mathcal{A}. We endow the set \mathcal{A} with the discrete topology and $X_{d}=\mathcal{A}^{\mathbb{Z}^{d}}$ with the product topology. We consider the \mathbb{Z}^{d}-shift σ on $\mathcal{A}^{\mathbb{Z}^{d}}$ defined for $l \in \mathbb{Z}^{d}$ and $u=\left(u_{k}\right)_{k} \in X_{d}$ by $\sigma^{l}(u)=\left(u_{k+l}\right)_{k}$. Any closed subset X of X_{d} invariant under the action of σ is called a \mathbb{Z}^{d}-subshift. We fix such a subshift X in the remaining of the paper.

For a bounded subset J of \mathbb{R}^{d} we consider the partition P_{J} into $J \cap \mathbb{Z}^{d}$-cylinders, i.e. the element P_{J}^{x} of P_{J} containing $x=\left(x_{i}\right)_{i \in \mathbb{Z}^{d}} \in X$ is given by $\mathrm{P}_{J}^{x}:=\left\{y=\left(y_{i}\right)_{i \in \mathbb{Z}^{d}} \in X, \forall i \in\right.$ $\left.J \cap \mathbb{Z}^{d} y_{i}=x_{i}\right\}$. In other terms we may define P_{J} as the joined partition $\bigvee_{j \in J \cap \mathbb{Z}^{d}} \sigma^{-j} \mathrm{P}_{0}$ with P_{0} being the zero-coordinate partition.

A cellular automaton (CA for short) defined on a \mathbb{Z}^{d}-subshift X is a continuous map $f: X \rightarrow X$ which commutes with the shift action σ. By a famous theorem of Hedlund [16] the cellular automaton f is given by a local rule, i.e. there exists a finite subset I of \mathbb{Z}^{d} and a map $F: \mathcal{A}^{I} \rightarrow \mathcal{A}$ such that

$$
\forall j \in \mathbb{Z}^{d}(f x)_{j}=F\left(\left(x_{j+i}\right)_{i \in I}\right)
$$

The (smallest) subset I is called the domain of the CA. Recall $I^{\prime}=I \cup\{0\}$ and let \mathbb{I} be the convex hull of I^{\prime}.
4.2. Lyapunov exponents for higher dimensional cellular automata. Lyapunov exponent of one-dimensional cellular automata have been defined in [18, 20]. We develop a similar theory in higher dimensions. Let f be a CA on a \mathbb{Z}^{d}-subshift X with domain I.

Given a convex body J of \mathbb{R}^{d} and $x \in X$, we let

$$
\mathcal{E}_{f}(x, J):=\left\{K \text { convex body, } f \mathrm{P}_{J}^{x} \subset \mathrm{P}_{K}^{f x}\right\}
$$

A priori the family $\mathcal{E}_{f}(x, J)$ does not admit a greatest element for the inclusion. Observe also that the convex body $J \ominus I$ belongs to $\mathcal{E}_{f}(x, J)$, in particular this family is not empty. Then we let for all x :

$$
\operatorname{gr}_{J} f(x):=\min \left\{\sharp J \backslash K, K \in \mathcal{E}_{f}(x, J)\right\} .
$$

The family $\mathcal{E}_{f}(x, J)$ and the function $\operatorname{gr}_{J} f(x)$ are constant on each atom A of P_{J}, thus we let $\mathcal{E}_{f}(A, J)$ and $\operatorname{gr}_{J} f(A)$ be these quantities. We denote by $\mathcal{D}_{f}(x, J)$ the subfamily of $\mathcal{E}_{f}(x, J)$ consisting in K with $\sharp J \backslash K=\operatorname{gr}_{J} f(x)$. For K in $\mathcal{D}_{f}(x, J)$ the intersection $K \cap J$ defines a convex body, which belongs also to $\mathcal{D}_{f}(x, J)$.

For a convex exhaustion $\mathcal{J}=\left(J_{n}\right)_{n}$, we define the growth $\operatorname{gr}_{\mathcal{J}} f$ with respect to \mathcal{J} as the following real functions on X :

$$
\operatorname{gr}_{\mathcal{J}} f:=\limsup _{n} \frac{\operatorname{gr}_{J_{n}} f}{p\left(J_{n}\right)}
$$

Finally we let for a convex domain $O \in \mathcal{D}^{1}$:

$$
\operatorname{gr}_{O} f=\sup _{\mathcal{J} \in \mathcal{E}(O)} \operatorname{gr}_{\mathcal{J}} f
$$

Lemma 4. The sequence of functions $\left(\operatorname{gr}_{O} f^{k}\right)_{k}$ is a subadditive cocycle, i.e.

$$
\forall k, l \in \mathbb{N} \forall x \in X, \operatorname{gr}_{O} f^{k+l}(x) \leq \operatorname{gr}_{O} f^{l}\left(f^{k} x\right)+\operatorname{gr}_{O} f^{k}(x)
$$

Proof. Fix $x \in X$ and $k, l \in \mathbb{N}$. Let $\mathcal{J}=\left(J_{n}\right)_{n} \in \mathcal{E}(O)$. We consider a sequence $\mathcal{K}:=\left(K_{n}\right)_{n}$ of convex bodies in $\prod_{n} \mathcal{D}_{f^{k}}\left(x, J_{n}\right)$ with $K_{n} \subset J_{n}$ for all n. Let I_{k} be the domain of f^{k}. The convex body $J_{n} \ominus I_{k}$ belongs to $\mathcal{E}_{f^{k}}\left(x, J_{n}\right)$ for all n. By Proposition 5, we have $\sharp J_{n} \backslash K_{n} \leq$ $\sharp \partial_{I_{k}}^{-} J_{n}=O\left(p\left(J_{n}\right)\right)$. It follows from Lemma 1 and Remark 2 that \mathcal{K} is a convex exhaustion in $\mathcal{E}(O)$ with $p\left(K_{n}\right) \sim^{n} p\left(J_{n}\right)$. We also let $\mathcal{L}=\left(L_{n}\right)_{n} \in \prod_{n} \mathcal{D}_{f^{l}}\left(f^{k} x, K_{n}\right)$ with $L_{n} \subset K_{n}$ for all n. Similarly the sequence \mathcal{L} belongs to $\mathcal{E}(O)$ with $p\left(L_{n}\right) \sim^{n} p\left(J_{n}\right)$. Then we have for all positive integers n :

$$
\begin{aligned}
f^{k+l} \mathrm{P}_{J_{n}}^{x} & =f^{l}\left(f^{k} \mathrm{P}_{J_{n}}^{x}\right), \\
& \subset f^{l}\left(\mathrm{P}_{K_{n}}^{f^{k} x}\right), \\
& \subset \mathrm{P}_{L_{n}}^{f^{k+l} x} .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\operatorname{gr}_{J_{n}} f^{k+l}(x) & \leq \sharp J_{n} \backslash L_{n}, \\
& \leq \sharp J_{n} \backslash K_{n}+\sharp K_{n} \backslash L_{n},
\end{aligned}
$$

then

$$
\begin{aligned}
\operatorname{gr}_{\mathcal{J}} f^{k+l}(x) & =\limsup _{n} \frac{\operatorname{gr}_{J_{n}} f}{p\left(J_{n}\right)}, \\
& \leq \limsup _{n} \frac{\operatorname{gr}_{K_{n}} f}{p\left(J_{n}\right)}+\limsup _{n} \frac{\operatorname{gr}_{L_{n}} f}{p\left(J_{n}\right)} \\
& \leq \underset{n}{\limsup _{n}} \frac{\operatorname{gr}_{K_{n}} f}{p\left(K_{n}\right)}+\underset{n}{\limsup } \frac{\operatorname{gr}_{L_{n}} f}{p\left(L_{n}\right)} \\
& \leq \operatorname{gr}_{\mathcal{K}} f^{k}(x)+\operatorname{gr}_{\mathcal{L}} f^{l}\left(f^{k} x\right)
\end{aligned}
$$

As the sequences \mathcal{K} and \mathcal{L} lie in $\mathcal{E}(O)$ we conclude that

$$
\operatorname{gr}_{O} f^{k+l}(x) \leq \operatorname{gr}_{O} f^{k}(x)+\operatorname{gr}_{O} f^{l}\left(f^{k} x\right)
$$

The nonnegative function $\operatorname{gr}_{O} f$ satisfies $\operatorname{gr}_{O} f \leq \sup _{\mathcal{J} \in \mathcal{E}(O)} \lim \sup _{n} \frac{\sharp \partial_{I}^{-} J_{n}}{p\left(J_{n}\right)}$ and this last term is finite according to Proposition 5. Therefore the subadditive ergodic theorem applies : for any $\mu \in \mathcal{M}(X, f)$ the sequence $\left(\frac{1}{n} \operatorname{gr}_{O} f^{n}(x)\right)_{k}$ converge almost everywhere to a f-invariant function χ_{O} with $\int \chi_{O} d \mu=\lim / \inf _{n} \frac{1}{n} \int \operatorname{gr}_{O} f^{n} d \mu$. We call the function χ_{O} the Lyapunov exponent of f with respect to O.

Remark 8. The exponent χ_{O} for $O \in \mathcal{D}$ plays somehow the role of the sum of the positive Lyapunov exponents in smooth dynamical systems.

5. Rescaled entropy of cellular automata

5.1. Definition. We let $\mathcal{M}(f)$ (resp. $\mathcal{M}(f, \sigma)$) be the set of invariant Borel probability measures on X which are f-invariant (resp. f - and σ-invariant). For a finite clopen partition P of X we let $H_{t o p}(\mathrm{P})=\log \sharp \mathrm{P}$ and $H_{\mu}(\mathrm{P})=-\sum_{A \in \mathrm{P}} \mu(A) \log \mu(A)$ with $\mu \in \mathcal{M}(f)$. In the following the symbol $*$ denotes either $*=$ top or $*=\mu \in \mathcal{M}(f)$. We let $h_{*}(f, \mathrm{P})$ be the entropy with respect to the clopen partition P :

$$
h_{*}(f, \mathrm{P}):=\lim _{n} \frac{1}{n} H_{*}\left(\bigvee_{k=0}^{n-1} f^{-k} \mathrm{P}\right) .
$$

For two partitions P, Q of X, we say P is finer than Q and we write $\mathrm{P}>\mathrm{Q}$, when any atom of P is contained in an atom of Q . The functions $H_{*}(\cdot)$ and $h_{*}(f, \cdot)$ are nondecreasing with respect to this order.

The rescaled entropy with respect to a convex exhaustion $\mathcal{J}=\left(J_{n}\right)_{n}$ is defined as follows

$$
h_{*}^{d}(f, \mathcal{J})=\limsup _{n} \frac{h_{*}\left(f, \mathrm{P}_{J_{n}}\right)}{p\left(J_{n}\right)}
$$

In [9] the authors defines a similar notion for the rescaled topological entropy with the renormalization factor $\sharp \partial_{I}^{-} J_{n}$ (which depends on the domain I of f) rather than $p\left(J_{n}\right)$.

Remark 9. For $d=2$, when $J=\bigcup_{i \in I} J_{i}$ is a finite disjoint union of Jordan domains J_{i} with Lipshitz boundary, we have

$$
\begin{aligned}
\frac{h_{\text {top }}\left(f, \mathrm{P}_{J}\right)}{p(J)} & \leq \frac{\sum_{i \in I} h_{\text {top }}\left(f, \mathrm{P}_{J_{i}}\right)}{\sum_{i \in I} p\left(J_{i}\right)} \\
& \leq \sup _{i \in I} \frac{h_{\text {top }}\left(f, \mathrm{P}_{J_{i}}\right)}{p\left(J_{i}\right)}
\end{aligned}
$$

Moreover for each i, we have $p\left(J_{i}\right) \geq p\left(\operatorname{cv}\left(J_{i}\right)\right)$ and $\mathrm{P}_{\mathrm{cv}\left(J_{i}\right)}$ is finer than $\mathrm{P}_{J_{i}}$. Therefore

$$
\begin{aligned}
\frac{h_{t o p}\left(f, \mathrm{P}_{J}\right)}{p(J)} & \leq \frac{\sum_{i \in I} h_{t o p}\left(f, \mathrm{P}_{J_{i}}\right)}{\sum_{i \in I} p\left(J_{i}\right)} \\
& \leq \sup _{i \in I} \frac{h_{t o p}\left(f, \mathrm{P}_{\operatorname{cv}\left(J_{i}\right)}\right)}{p\left(\operatorname{cv}\left(J_{i}\right)\right)}
\end{aligned}
$$

This inequality justifies that we focus on convex bodies J of \mathbb{R}^{d}.
We let also for any $O \in \mathcal{D}^{1}$

$$
h_{*}^{d}(f, O)=\sup _{\mathcal{J} \in \mathcal{E}(O)} h_{*}^{d}(f, \mathcal{J})
$$

and

$$
h_{*}^{d}(f)=\sup _{\mathcal{J}} h_{*}^{d}(f, \mathcal{J}),
$$

where the last supremum holds over all convex exhaustions \mathcal{J}. For $d=1$ we have $p(J)=2$ for any convex subset J. Therefore up to a factor 2 we recover the usual definition of entropy, $2 h_{*}^{1}(f)=h_{*}(f)$.
Remark 10. As the CA f commutes with the shift action σ we have for all $k \in \mathbb{Z}^{d}$ and any subset J of $\mathbb{Z}^{d} h_{t o p}\left(f, \mathrm{P}_{J+k}\right)=h_{\text {top }}\left(f, \sigma^{-k} \mathrm{P}_{J}\right)=h_{\text {top }}\left(f, \mathrm{P}_{J}\right)$ and the same holds for the measure theoretical entropy with respect to measures in $\mathcal{M}(f, \sigma)$. Let us call generalized convex domain any convex body with a non empty interior set. Replacing convex domains by generalized convex domains, we may define generalized convex exhaustions \mathcal{J} and the associated rescaled entropies. Then it follows from the aforementioned invariance by translation of the entropy, that $h_{\text {top }}^{d}(O)=h_{\text {top }}^{d}(O+\alpha)$ for all $\alpha \in \mathbb{R}^{d}$ and all generalized convex domain O with unit perimeter. Indeed for any $\left(J_{n}\right)_{n} \in \mathcal{E}(O)$ (resp. $\mathcal{E}(\mathcal{O}+\alpha)$) there is a sequence of integers $\left(k_{n}\right)_{n}$ with $\left(J_{n}+k_{n}\right)_{n} \in \mathcal{E}(\mathcal{O}+\alpha)\left(\operatorname{resp} .\left(J_{n}\right)_{n} \in \mathcal{E}(O)\right)$.

In a seminal work [14], Milnor investigated the d-dimensional topological entropy of a compact set O in $\mathbb{R} \times \mathbb{R}^{d}$ with respect to the $\mathbb{N} \times \mathbb{Z}^{d}$-action generated by a CA f and the \mathbb{Z}^{d}-shift σ. When $O=\{0\} \times O^{\prime}$ for some $O^{\prime} \in \mathcal{D}$, this d-dimensional entropy $\eta_{d}(O)$ may be written as follows :

$$
\eta_{d}(O)=\sup _{m \in \mathbb{N}}\left(\limsup _{n} \frac{1}{n^{d}} H_{t o p}\left(\bigvee_{k=0}^{m-1} f^{-k} \mathrm{P}_{n O^{\prime}}\right)\right)
$$

whereas another renormalization is used here in the definition of the rescaled entropy with respect to O^{\prime} :

$$
h_{t o p}^{d}\left(f, \mathcal{J}_{O^{\prime}}\right)=\limsup _{n}\left(\lim _{m} \frac{1}{m n^{d-1}} H_{t o p}\left(\bigvee_{k=0}^{m-1} f^{-k} \mathrm{P}_{n O^{\prime}}\right)\right)
$$

These quantities have different behaviour, e.g. $\eta_{d}(O)$ is proportional to the d-Lebesgue measure $V\left(O^{\prime}\right)$ of O^{\prime} (Theorem 2 in [14]), but we will see in the proof of Theorem 1 in Section 7 that when the smallest bounding sphere of the domain I of the algebraic CA f is degenerated then $0<h_{\text {top }}^{d}(f)=\lim _{R \rightarrow+\infty} h_{\text {top }}^{d}\left(f, \mathcal{J}_{\widetilde{T_{R}^{\prime}}}\right.$, but $V\left(\widetilde{T_{R}^{\prime}}\right) \xrightarrow{R \rightarrow+\infty} 0$ (with $T_{R}^{\prime} \in \mathcal{D}$ as defined in Subsection 3.5).
5.2. Link with the metric mean dimension in dimension two. In a compact metric space $(X, \mathrm{~d})$, the ball of radius $\epsilon \geq 0$ centered at $x \in X$ will be denoted by $B_{\mathrm{d}}(x, \epsilon)$. For a continuous map $f: X \rightarrow X$ we denote by d_{n} the dynamical distance defined for all $n \in \mathbb{N}$ by

$$
\forall x, y \in X, \mathrm{~d}_{n}(x, y)=\max \left\{\mathrm{d}\left(f^{k} x, f^{k} y\right), 0 \leq k<n\right\}
$$

The metric mean dimension of f is defined as $\operatorname{mdim}(f, \mathrm{~d})=\limsup _{\epsilon \rightarrow 0} \frac{h_{\text {top }}(f, \epsilon)}{|\log \epsilon|}$ where $h_{\text {top }}(f, \epsilon)$ denotes the topological entropy at the scale $\epsilon>0$:

$$
h_{t o p}(f, \epsilon):=\limsup _{n} \frac{1}{n} \log \min \left\{\sharp C, \bigcup_{x \in C} B_{\mathrm{d}_{n}}(x, \epsilon)=X\right\} .
$$

The topologial mean dimension is conjectured to be the infimum of $\operatorname{mdim}(f, \mathrm{~d})$ over all distances on X (this is known for systems with the marker property). We refer to [11] for alternative definitions and further properties of mean dimension. The topological mean dimension of a finite dimensional topological system is null. Here f is a CA on a \mathbb{Z}^{d}-subshift X. In particular it has zero topological mean dimension.

Fix $\alpha>1$. To any exhaustion $\mathcal{J}=\left(J_{n}\right)_{n}$ of \mathbb{R}^{d}, we may associate an ultrametric distance $\mathrm{d}_{\mathcal{J}}$ on X_{d} as follows :

$$
\forall x=\left(x_{k}\right)_{k \in \mathbb{Z}^{d}} \text { and } y=\left(y_{k}\right)_{k \in \mathbb{Z}^{d}}, \quad \mathrm{~d}_{\mathcal{J}}(x, y)=\alpha^{-\max \left\{n \in \mathbb{N}, x_{k}=y_{k} \forall k \in J_{n}\right\}}
$$

Then for $n \in \mathbb{N}$ the ball $B_{\mathrm{d}_{\mathcal{J}}}\left(x, \alpha^{-n}\right)$ with respect to $\mathrm{d}_{\mathcal{J}}$ coincides with the cylinder $\mathrm{P}_{J_{n}}^{x}$. Therefore we have for any $O \in \mathcal{D}$:

$$
\begin{aligned}
h_{\text {top }}^{d}\left(f, \mathcal{J}_{O}\right) & =\limsup _{n} \frac{h_{\text {top }}\left(f, \mathrm{P}_{n O}\right)}{p(n O)} \\
& =\limsup _{n} \frac{h_{\text {top }}\left(f, \alpha^{-n}\right)}{n^{d-1} p(O)} \\
& =\frac{(\log \alpha)^{d-1}}{p(O)} \limsup _{\epsilon \rightarrow 0} \frac{h_{t o p}(f, \epsilon)}{|\log \epsilon|^{d-1}}
\end{aligned}
$$

In particular in dimension two we get :

$$
h_{\text {top }}^{2}\left(f, \mathcal{J}_{O}\right)=\frac{\log \alpha}{p(O)} \operatorname{mdim}\left(f, \mathrm{~d}_{\mathcal{J}_{O}}\right)
$$

For $d>2$ the mean dimension $\operatorname{mdim}\left(f, \mathrm{~d}_{\mathcal{J}_{O}}\right)$ is infinite whenever the rescaled entropy $h_{\text {top }}^{d}\left(f, \mathcal{J}_{O}\right)$ is positive. In [19] the authors compute explicitly the mean dimension of the particular CA given by the horizontal shift on a \mathbb{Z}^{2}-subshift with respect to some metrics of the form $d_{\mathcal{J}_{O}}$ with O being the unit ball of standard norms on \mathbb{R}^{d}.

Remark 11. In [19] the authors also work with a measure theoretical quantity, called the measure distorsion rate dimension and show a variational principle with the metric mean dimension of $\mathrm{d}_{\mathcal{J}_{O}}$. Does this quantity coincides with $\mu \mapsto h_{\mu}^{2}\left(f, \mathcal{J}_{O}\right)$?
5.3. Monotonicity and Power. We investigate now basic properties of the rescaled entropy.

Lemma 5. For any $O \in \mathcal{D}$ and any $\alpha>0$, we have

$$
h_{*}^{d}\left(f, \mathcal{J}_{O}\right)=h_{*}^{d}\left(f, \mathcal{J}_{\alpha O}\right)
$$

Proof. For $n \in \mathbb{N}$, we let $k_{n}=\left\lceil\frac{n}{\alpha}\right\rceil$, thus $n O \subset k_{n} \alpha O$ and $p(n O) \sim^{n} p\left(k_{n} \alpha O\right)$. Therefore

$$
\begin{aligned}
h_{*}^{d}\left(f, \mathcal{J}_{O}\right) & =\underset{n}{\limsup _{n}} \frac{h_{*}\left(f, \mathrm{P}_{n O}\right)}{p(n O)} \\
& \leq \limsup _{n} \frac{h_{*}\left(f, \mathrm{P}_{k_{n} \alpha O}\right)}{p(n O)} \\
& \leq \limsup _{n} \frac{h_{*}\left(f, \mathrm{P}_{k_{n} \alpha O}\right)}{p\left(k_{n} \alpha O\right)} \\
& \leq h_{*}^{d}\left(f, \mathcal{J}_{\alpha O}\right)
\end{aligned}
$$

The other inequality is obtained by considering αO and α^{-1} in place of O and α.

Lemma 6. For any $O \in \mathcal{D}^{1}$ and $O^{\prime} \in \mathcal{D}$ with $O \subset \operatorname{Int}\left(O^{\prime}\right)$, we have

$$
h_{*}^{d}\left(f, \mathcal{J}_{O}\right) \leq h_{*}^{d}(f, O) \leq p\left(O^{\prime}\right) h_{*}^{d}\left(f, \mathcal{J}_{O^{\prime}}\right)
$$

Proof. As $\mathcal{J}_{O} \in \mathcal{E}(O)$ the inequality $h_{*}^{d}\left(f, \mathcal{J}_{O}\right) \leq h_{*}^{d}(f, O)$ follows from the definitions. Let now $\mathcal{J} \in \mathcal{E}(O)$. For n large enough we have $\widetilde{J}_{n} \subset \operatorname{Int}\left(O^{\prime}\right)$, therefore $J_{n} \subset p\left(J_{n}\right)^{\frac{1}{d-1}} O^{\prime}$. We conlude that

$$
\begin{aligned}
h_{*}^{d}(f, \mathcal{J}) & \leq \limsup _{n} \frac{p\left(p\left(J_{n}\right)^{\frac{1}{d-1}} O^{\prime}\right)}{p\left(J_{n}\right)} h_{*}^{d}\left(f, \mathcal{J}_{O^{\prime}}\right) \\
& \leq p\left(O^{\prime}\right) h_{*}^{d}\left(f, \mathcal{J}_{O^{\prime}}\right)
\end{aligned}
$$

For $O \in \mathcal{D}^{1}$ the origin belongs to $\operatorname{Int}(O)$ so that $\alpha O \in \mathcal{D}$ and $O \subset \operatorname{Int}(\alpha O)$ for any $\alpha>1$. Moreover we have $h_{*}^{d}\left(f, \mathcal{J}_{\alpha O}\right)=h_{*}^{d}\left(f, \mathcal{J}_{O}\right)$ by Lemma 5 . Together with Lemma 6 we get immediately :

Corollary 12.

$$
\forall O \in \mathcal{D}^{1}, h_{*}^{d}(f, O)=h_{*}^{d}\left(f, \mathcal{J}_{O}\right)
$$

Corollary 13.

$$
O \mapsto h_{*}^{d}(f, O) \text { is continuous on } \mathcal{D}^{1}
$$

Convex d-polytopes are dense in \mathcal{D}. Therefore we get with \mathcal{P} being the collection of convex d-polytopes with the origin in their interior set :

Corollary 14.

$$
\sup _{O \in \mathcal{D}^{1}} h_{*}^{d}(f, O)=\sup _{P \in \mathcal{P}} h_{*}^{d}\left(f, \mathcal{J}_{P}\right)
$$

However we will see that the supremum is not always achieved. We prove now a formula for the rescaled entropy of a power.

Lemma 7.

$$
\forall O \in \mathcal{D}^{1} \forall k \in \mathbb{N}, h_{*}^{d}\left(f^{k}, O\right)=k h_{*}^{d}(f, O)
$$

Proof. Let $O \in \mathcal{D}^{1}$ and $\mathcal{J}=\left(J_{n}\right)_{n} \in \mathcal{E}(O)$. Let $J_{n}^{k}=J_{n} \oplus \underbrace{I \oplus \cdots \oplus I}_{k \text { times }}$ for all n. The sequence $\mathcal{J}^{k}=\left(J_{n}^{k}\right)_{n}$ belongs also to $\mathcal{E}(O)$. Moreover the partition $\mathrm{P}_{J_{n}^{k}}$ is finer than $\bigvee_{l=0}^{k-1} f^{-l} \mathrm{P}_{J_{n}}$. Therefore

$$
h_{*}\left(f^{k}, \mathrm{P}_{J_{n}}\right) \leq k h_{*}\left(f, \mathrm{P}_{J_{n}}\right)=h_{*}\left(f^{k}, \bigvee_{l=0}^{k-1} f^{-l} \mathrm{P}_{J_{n}}\right) \leq h_{*}\left(f^{k}, \mathrm{P}_{J_{n}^{k}}\right)
$$

and we then obtain

$$
h_{*}^{d}\left(f^{k}, \mathcal{J}\right) \leq k h_{*}^{d}(f, \mathcal{J}) \leq h_{*}^{d}\left(f^{k}, \mathcal{J}^{k}\right)
$$

We conclude by taking the supremum in $\mathcal{J} \in \mathcal{E}(O)$.
Remark 15. Clearly we have $h_{\mu}^{d}(f) \leq h_{\text {top }}^{d}(f)$ for any $\mu \in \mathcal{M}(f)$ but we ignore if a general variational principle holds true.
5.4. A first upperbound for the rescaled entropy. Let (X, f) be a cellular automaton with domain I. We relate the entropy of P_{J} with the entropy of $\mathrm{P}_{\partial^{ \pm} J}$ and we prove an upperbound for the rescaled entropy $h_{\text {top }}^{d}(f, O)$ in term of the first \mathbb{I}-relative quermass integral of O with \mathbb{I} being the convex hull of I^{\prime}.
Lemma 8. For any bounded subset J of \mathbb{R}^{d}, we have

$$
h_{*}\left(f, \mathrm{P}_{J}\right)=h_{*}\left(f, \mathrm{P}_{\partial_{I}^{-} J}\right) \text { and } h_{*}\left(f, \mathrm{P}_{J}\right) \leq h_{*}\left(f, \mathrm{P}_{\partial_{I}^{+} J}\right)
$$

Proof. The inequality $h_{*}\left(f, \mathrm{P}_{J}\right) \geq h_{*}\left(f, \mathrm{P}_{\partial^{-} J}\right)$ follows directly from the inclusion $\partial^{-} J \subset J$. By definition of the domain I and the erosion $J \ominus I$, we have $P_{J}>f^{-1} P_{J \ominus I}$. Therefore we get $f^{-1} \mathrm{P}_{J} \vee \mathrm{P}_{J}=f^{-1} \mathrm{P}_{\partial^{-} J} \vee P_{J}$ and then by induction $\mathrm{P}_{J} \vee \bigvee_{l=0}^{k-1} f^{-l} \mathrm{P}_{\partial^{-} J}=\bigvee_{l=0}^{k-1} f^{-l} \mathrm{P}_{J}$ for all k. We conclude that :

$$
\begin{aligned}
h_{*}\left(f, \mathrm{P}_{J}\right) & =\lim _{k} \frac{1}{k} H_{*}\left(f, \bigvee_{l=0}^{k-1} f^{-l} \mathrm{P}_{J}\right) \\
& \leq \lim _{k} \frac{1}{k}\left(H_{*}\left(\mathrm{P}_{J}\right)+H_{*}\left(\bigvee_{l=0}^{k-1} f^{-l} \mathrm{P}_{\partial^{-} J}\right)\right) \\
& \leq h_{*}\left(f, \mathrm{P}_{\partial^{-} J}\right)
\end{aligned}
$$

We also have

$$
\mathrm{P}_{J} \vee \mathrm{P}_{\partial^{+} J}>\mathrm{P}_{J \oplus I}>f^{-1} \mathrm{P}_{J}
$$

Therefore we get now by induction on k

$$
\mathrm{P}_{J} \vee \bigvee_{l=0}^{k-2} f^{-l} \mathrm{P}_{\partial^{+} J}>\bigvee_{l=0}^{k-1} f^{-l} \mathrm{P}_{J}
$$

This implies $h_{*}\left(f, \mathrm{P}_{\partial_{I}^{+} J}\right) \leq h_{*}\left(f, \mathrm{P}_{J}\right)$.

Proposition 16. For any $O \in \mathcal{D}^{1}$,

$$
h_{t o p}^{d}(f, O) \leq V_{\mathbb{I}}(O) \log |\mathcal{A}| .
$$

Proof. Recall that

$$
\begin{aligned}
& h_{t o p}^{d}(f, O)=h_{t o p}^{d}\left(f, \mathcal{J}_{O}\right) \\
&=\lim _{n} \sup ^{h_{t o p}\left(f, \mathrm{P}_{n O}\right)} \\
& p(n O)
\end{aligned}
$$

Then by applying Lemma 8 we obtain

$$
\begin{aligned}
& h_{\text {top }}^{d}(f, O) \leq \limsup _{n} \frac{h_{\text {top }}\left(f, \mathrm{P}_{\partial^{ \pm} n O}\right)}{p(n O)}, \\
& \leq \limsup _{n}^{\sharp \partial^{ \pm} n O \log |\mathcal{A}|} \\
& p(n O)
\end{aligned} .
$$

For all $k \in \mathbb{N} \backslash\{0\}$ we let I_{k} be the domain of f^{k} and we denote by \mathbb{I}_{k} the convex hull of $I_{k}^{\prime}=I_{k} \cup\{0\}$. Clearly we have $I_{k} \subset \underbrace{I \oplus \cdots \oplus}_{k \text { tim }}$, therefore $\mathbb{I}_{k} \subset k \mathbb{I}$. By Lemma 2, we get for some constant $c=c(d)$:

$$
\begin{aligned}
h_{t o p}^{d}\left(f^{k}, O\right) & \leq\left(V_{\mathbb{I}_{k}}(O)+c\right) \log |\mathcal{A}|, \\
& \leq\left(V_{k \mathbb{I}}(O)+c\right) \log |\mathcal{A}| \\
& \leq\left(k V_{\mathbb{I}}(O)+c\right) \log |\mathcal{A}| .
\end{aligned}
$$

But by Lemma 11 we have $h_{\text {top }}^{d}\left(f^{k}, O\right)=k h_{\text {top }}^{d}(f, O)$, so that we finally conclude when k goes to infinity

$$
h_{\text {top }}^{d}(f, O) \leq V_{\mathbb{I}}(O) \log |\mathcal{A}| .
$$

6. RUELLE INEQUALITY

Recall (X, σ) denotes a \mathbb{Z}^{d}-subshift. The topological entropy of σ is defined for any Fölner sequence $\mathcal{L}=\left(L_{n}\right)_{n}$ (see e.g. [22]) as

$$
h_{t o p}(\sigma)=\limsup _{n} \frac{H_{t o p}\left(\mathrm{P}_{L_{n}}\right)}{\left|L_{n}\right|}
$$

Lemma 9. For all $\epsilon>0$ there exists $c>0$ such that we have for any $K \subset J$ convex bodies:

$$
H_{t o p}\left(\mathrm{P}_{J \backslash K}\right) \leq(\sharp J \backslash K+c p(J \oplus \mathrm{C})) \cdot\left(h_{t o p}(\sigma)+\epsilon\right) .
$$

Proof. Let $\epsilon>0$. As the sequence of cubes $\mathcal{C}=\left(C_{n}\right)_{n}$ defined by $C_{n}=\left[-n, n\left[{ }^{d} \cap \mathbb{Z}^{d}\right.\right.$ is a Fölner sequence, there is a positive integer m such that $\frac{H_{t o p}\left(\mathrm{P}_{C_{m}}\right)}{\left|C_{m}\right|}<h_{t o p}(\sigma)+\epsilon$. Then for some $c=c(m)>0$ we may cover $\mathbb{Z}^{d} \cap(J \backslash K)$ by a family \mathcal{F} at most $\frac{\sharp J \backslash K+c p(J \oplus \mathrm{C})}{\left|C_{m}\right|}$ disjoint translated copies of C_{m}. Indeed if R_{m} denotes a partition of \mathbb{R}^{d} into translated copies of C_{m}, then any atom A of R_{m} with $\mathbb{Z}^{d} \cap A \cap(J \backslash K) \neq \emptyset$ either satisfies $\mathbb{Z}^{d} \cap A \subset J \backslash K$ or $\mathbb{Z}^{d} \cap A \cap\left(\partial_{C_{m}}^{-} J \cup \partial_{C_{m}}^{-} K\right) \neq \emptyset$. Clearly the number of A 's in the first case is less than $\frac{\sharp J \backslash K}{\left|C_{m}\right|}$, whereas the numbers of atoms A satisfying the second condition is less than $\sharp \partial_{C_{m}}^{-} J+\sharp \partial_{C_{m}}^{-} K$. Arguing as in the proof of Proposition 5, this last term is less than $c(p(J \oplus \mathrm{C})+p(K \oplus \mathrm{C}))$ for some constant c depending on m. As K is contained in J we have $p(J \oplus \mathrm{C}) \leq p(K \oplus \mathrm{C})$.

Therefore

$$
\begin{aligned}
H_{t o p}\left(\mathrm{P}_{J \backslash K}\right) & \leq(\sharp J \backslash K+2 c p(J \oplus \mathrm{C})) \frac{H_{t o p}\left(\mathrm{P}_{C_{m}}\right)}{\left|C_{m}\right|}, \\
& \leq(\sharp J \backslash K+2 c p(J \oplus \mathrm{C})) \cdot\left(h_{t o p}(\sigma)+\epsilon\right) .
\end{aligned}
$$

We refine now the inequality obtained in Proposition 16 at the level of invariant measures. We recall that χ_{O} denotes the Lyapunov exponent of f with respect to O as defined at the end of Section 4.

Lemma 10.

$$
\forall \mu \in \mathcal{M}(f), h_{\mu}(f, O) \leq h_{t o p}(\sigma) \int \chi_{O} d \mu
$$

Proof. For any convex domain J and any $\mu \in \mathcal{M}(f)$ we have

$$
\begin{aligned}
h_{\mu}\left(f, \mathrm{P}_{J}\right) & \leq H_{\mu}\left(f^{-1} \mathrm{P}_{J} \mid \mathrm{P}_{J}\right), \\
& \leq \sum_{A \in \mathrm{P}_{J}} \mu(A) H_{\mu_{A}}\left(f^{-1} \mathrm{P}_{J}\right)
\end{aligned}
$$

Fix $\epsilon>0$ and let c be as in Lemma 9. Then if $\left(K_{A}\right)_{A \in \mathrm{P}_{J}}$ is a family of convex bodies in $\prod_{A \in \mathrm{P}_{J}} \mathcal{E}_{f}(A, J)$ with $K_{A} \subset J$ for all A we obtain

$$
\begin{aligned}
h_{\mu}\left(f, \mathrm{P}_{J}\right) & \leq \sum_{A \in \mathrm{P}_{J}} \mu(A) H_{\mu_{A}}\left(f^{-1} \mathrm{P}_{J \backslash K_{A}}\right), \\
& \leq \sum_{A \in \mathrm{P}_{J}} \mu(A) H_{t o p}\left(\mathrm{P}_{J \backslash K_{A}}\right), \\
& \leq \sum_{A \in \mathrm{P}_{J}} \mu(A)\left(\sharp J \backslash K_{A}+c p(J \oplus \mathrm{C})\right) \cdot\left(h_{t o p}(\sigma)+\epsilon\right) .
\end{aligned}
$$

By choosing K_{A} with $\sharp J \backslash K_{A}$ minimal we obtain

$$
h_{\mu}\left(f, \mathrm{P}_{J}\right) \leq\left(h_{t o p}(\sigma)+\epsilon\right) \cdot\left(\int \operatorname{gr}_{J} f d \mu+c p(J \oplus \mathrm{C})\right)
$$

Therefore we have for any convex exhaustion $\mathcal{J}=\left(J_{n}\right)_{n}$ (recall that $\left.p\left(J_{n} \oplus \mathrm{C}\right) \sim^{n} p\left(J_{n}\right)\right)$:

$$
\begin{aligned}
h_{\mu}^{d}(f, \mathcal{J}) & =\underset{n}{\limsup _{\sup }} \frac{h_{\mu}\left(f, \mathrm{P}_{J}\right)}{p\left(J_{n}\right)}, \\
& \leq\left(h_{\text {top }}(\sigma)+\epsilon\right) \cdot\left(\limsup _{n} \int \frac{\operatorname{gr}_{J_{n}} f}{p\left(J_{n}\right)} d \mu+c\right) .
\end{aligned}
$$

By Proposition 5 we have for all $x \in X$

$$
\sup _{n \in \mathbb{N}} \frac{\operatorname{gr}_{J_{n}} f(x)}{p\left(J_{n}\right)} \leq \sup _{n \in \mathbb{N}} \frac{\sharp \partial^{-} J_{n}}{p\left(J_{n}\right)}<+\infty
$$

We may therefore apply Fatou's Lemma to the sequence of functions $\left(-\frac{\mathrm{gr}_{J_{n}} f}{p\left(J_{n}\right)}\right)_{n}$:

$$
\limsup _{n} \int \frac{\operatorname{gr}_{J_{n}} f}{p\left(J_{n}\right)} d \mu \leq \int \limsup _{n} \frac{\operatorname{gr}_{J_{n}} f}{p\left(J_{n}\right)} d \mu
$$

then

$$
h_{\mu}^{d}(f, \mathcal{J}) \leq\left(h_{t o p}(\sigma)+\epsilon\right)\left(\int \operatorname{gr}_{\mathcal{J}} f d \mu+c\right)
$$

By taking the supremum over $\mathcal{J} \in \mathcal{E}(O)$ we get

$$
h_{\mu}^{d}(f, O) \leq\left(h_{t o p}(\sigma)+\epsilon\right)\left(\int \operatorname{gr}_{O} f d \mu+c\right)
$$

By Lemma 7 we have $\frac{h_{\mu}^{d}\left(f^{k}, O\right)}{k}=h_{\mu}^{d}(f, O)$ for any k. Apply the above inequality to f^{k} :

$$
h_{\mu}^{d}(f, O) \leq\left(h_{t o p}(\sigma)+\epsilon\right)\left(\int \frac{\mathrm{gr}_{O} f^{k}}{k} d \mu+\frac{c}{k}\right) .
$$

When k goes to infinity and then ϵ goes to zero, we conclude $h_{\mu}^{d}(f, O) \leq h_{t o p}(\sigma) \int \chi_{O} d \mu$.

7. Entropy formula for permutative CA

The cellular automaton f is said permutative at $i \in \mathbb{Z}^{d}$ if for all pattern P on $I \backslash\{i\}$ and for all $a \in \mathcal{A}$ there is $b \in \mathcal{A}$ such that the pattern P_{b}^{i} on $I \cup\{i\}$ given by the completion of P at i by b satisfies $F\left(P_{b}^{i}\right)=a$, in particular i belongs to the domain I of f. The CA is said permutative when it is permutative at the nonzero extreme points of the convex hull \mathbb{I} of $I^{\prime}=I \cup\{0\}$ (these points lie in I). The algebraic CA as described in the introduction are permutative.

Proposition 17. The topological rescaled entropy of a permutative $C A f$ on X_{d} is given by

$$
h_{\text {top }}^{d}(f)=R_{I^{\prime}} \log |\mathcal{A}|
$$

The sets I^{\prime} and \mathbb{I} have the same smallest bounding sphere, thus $R_{I^{\prime}}=R_{\mathbb{I}}$. Theorem 1 , stated in the introduction, follows from Proposition 17.
Question. For a permutative CA, the uniform measure $\lambda^{\mathbb{Z}^{d}}$ with λ being the uniform measure on \mathcal{A} is known to be invariant [23]. Does the uniform measure maximize the rescaled entropy?

Recall that for any $k \in \mathbb{N} \backslash\{0\}$ we denote by I_{k} the domain of f^{k} and \mathbb{I}_{k} the convex hull of $I_{k}^{\prime}=I_{k} \cup\{0\}$. In the following we also let $C(P, L)=\left\{\left(x_{i}\right)_{i \in \mathbb{Z}^{d}} \in X, x_{j}=p_{j} \forall j \in L\right\}$ be the cylinder associated to the pattern $P=\left(p_{j}\right)_{j \in L} \in \mathcal{A}^{L}$ on $L \subset \mathbb{Z}^{d}$. We also write $C(P)$ for this cylinder when there is no confusion on L.

Lemma 11. For any permutative $C A f$ and any $k \in \mathbb{N} \backslash\{0\}$, the $C A f^{k}$ is also permutative and

$$
\mathbb{I}_{k}=k \mathbb{I} .
$$

Proof. As already observed, the inclusion $\mathbb{I}_{k} \subset k \mathbb{I}$ holds for any CA (not necessarily permutative). We will show $k \operatorname{ex}(\mathbb{I}) \subset I_{k}^{\prime}$, which implies together with $\mathbb{I}_{k} \subset k \mathbb{I}$ the equality $\mathbb{I}_{k}=k \mathbb{I}$. Let $i \in \operatorname{ex}(\mathbb{I}) \backslash\{0\} \subset I$. For a fixed k we prove by induction on k that f^{k} is permutative at $k i$, in particular $k i \in I_{k}^{\prime}$. Let P be a pattern on $I_{k} \backslash\{k i\}$ and let $a \in \mathcal{A}$. Since we have $I_{k} \subset I_{k-1} \oplus I$, we may complete P by a pattern Q on $\left(I_{k-1} \oplus I\right) \backslash\{k i\}$. By induction hypothesis, $(k-1) i$ lies in $\operatorname{ex}\left(\mathbb{I}_{k-1}\right)$ and i lies in $\operatorname{ex}(\mathbb{I})$, therefore $k i$ does not belong to $I_{k-1} \oplus(I \backslash\{i\})$, so that we have $I_{k-1} \oplus(I \backslash\{i\}) \subset\left(I_{k-1} \oplus I\right) \backslash\{k i\}$. Therefore there is a pattern R on $I \backslash\{i\}$ such that $f^{k-1} C\left(Q,\left(I_{k-1} \oplus I\right) \backslash\{k i\}\right)$ is contained in the cylinder $C(R, I \backslash\{i\})$. As f is permutative at i there is $b \in \mathcal{A}$ with $F\left(R_{b}^{i}\right)=a$ or in other terms $f\left(C\left(R_{b}^{i}, I\right)\right) \subset C(a,\{0\})$. Since f^{k-1} is permutative at $(k-1) i$, we may find $c \in \mathcal{A}$ with $f^{k-1}\left(C\left(Q_{c}^{k i}, I_{k-1} \oplus I\right)\right) \subset C(b,\{i\})$. Therefore we get

$$
f^{k}\left(C\left(Q_{c}^{k i}, I_{k-1} \oplus I\right)\right) \subset f\left(C\left(R_{b}^{i}, I\right)\right) \subset C(a,\{0\})
$$

But I_{k} is the domain of f^{k} and P is the restriction of Q to $I_{k} \backslash\{k i\}$, so that we also have $f^{k}\left(C\left(P_{c}^{k i}, I_{k}\right)\right) \subset C(a,\{0\})$, i.e. f^{k} is permutative at $k i$.

For a convex d-polytope J and a face F of J we consider the subset of $\partial_{\pi}^{-} J$ given by $\partial_{\mathbb{I}}^{-} F:=\partial_{\mathbb{I}}^{-} J \cap T_{F}^{+} J\left(-h_{\mathbb{I}}\left(N^{F}\right)\right)$. The sets $\partial_{\mathbb{I}}^{-} F$ for $F \in \mathcal{F}(J)$ are covering $\partial_{\mathbb{I}}^{-} J$ but do not define a partition in general. For any $F \in \mathcal{F}(J)$ we let $u^{F} \in \operatorname{ex}(\mathbb{I}) \subset I^{\prime}$ with $u^{F} \cdot N^{F}=h_{\mathbb{I}}\left(N^{F}\right)$ and we also let d_{F} be the the Euclidean distance to T_{F}. Then for $j \in \mathbb{Z}^{d} \cap \partial_{\mathbb{I}}^{-} J$ we let F_{j} be a face of J such that $d_{F_{j}}\left(j+u^{F_{j}}\right)=-d_{F_{j}}(j)+u^{F_{j}} \cdot N^{F_{j}}$ is maximal among faces F with $j \in \partial_{\mathbb{I}}^{-} F$. We consider then a total order \prec on $\mathbb{Z}^{d} \cap \partial_{\mathbb{I}}^{-} J$ such that $i \prec j$ if $d_{F_{i}}\left(i+u^{F_{i}}\right)<d_{F_{j}}\left(j+u^{F_{j}}\right)$. We also let $\mathcal{F}_{\mathbb{I}}(J)$ be the subset of $\mathcal{F}(J)$ given by faces F for which u_{F} is uniquely defined. We denote by $\partial_{\mathbb{I}}^{\perp} J$ the subset of $\partial_{\mathbb{I}}^{-} J$ given by

$$
\partial_{\mathbb{I}}^{\perp} J:=\bigcup_{F \in \mathcal{F}_{\mathbb{I}}(J)} \partial_{\mathbb{I}}^{-} F .
$$

Lemma 12. With the above notations, let $j \in \mathbb{Z}^{d} \cap \partial_{\mathbb{I}}^{\perp} J$. Then

$$
\forall k \in \mathbb{N}, j+k u^{F_{j}} \notin\left\{j^{\prime}, j^{\prime} \prec j\right\} \oplus k \mathbb{I} .
$$

Proof. We argue by contradiction : there are $j^{\prime} \prec j$ and $u \in \mathbb{I}$ with $j+k u^{F_{j}}=j^{\prime}+k u$. Observe that

$$
\begin{aligned}
d_{F_{j}}\left(j+k u^{F_{j}}\right) & =d_{F_{j}}\left(j+u^{F_{j}}\right)+(k-1) u^{F_{j}} \cdot N^{F_{j}} \\
d_{F_{j}}\left(j^{\prime}+k u\right) & =d_{F_{j}}\left(j^{\prime}+u\right)+(k-1) u \cdot N^{F_{j}}
\end{aligned}
$$

We will show that the equality between these two distances implies $u=u^{F_{j}}$, therefore $j=j^{\prime}$. Indeed we have

$$
\begin{array}{rlrl}
d_{F_{j}}\left(j^{\prime}+u\right) & \leq \sup _{v \in \operatorname{ex}(\mathbb{I})} d_{F_{j}}\left(j^{\prime}+v\right), & u \cdot N^{F_{j}} & \leq \sup _{v \in \operatorname{ex}(\mathbb{I})} v \cdot N^{F_{j}}, \\
& \leq d_{F_{j^{\prime}}}\left(j^{\prime}+u^{F_{j^{\prime}}}\right), & & \leq h_{\mathbb{I}}\left(N^{F_{j}}\right), \\
d_{F_{j}}\left(j^{\prime}+u\right) \leq d_{F_{j}}\left(j+u^{F_{j}}\right) & u \cdot N^{F_{j}} & \leq u^{F_{j}} \cdot N^{F_{j}},
\end{array}
$$

therefore $u \cdot N^{F_{j}}=u^{F_{j}} \cdot N^{F_{j}}$, and finally $u=u^{F_{j}}$ as j belongs to $\mathbb{Z}^{d} \cap \partial_{\mathbb{I}}^{\perp} J$.
For a partition P of X and a positive integer k, we write P^{k} to denote the iterated partition $\bigvee_{l=0}^{k-1} f^{-l} \mathrm{P}$ in order to simplify the notations.

Lemma 13. Let J be a convex d-polytope and let k, n be positive integers. For any $A^{k} \in \mathrm{P}_{J}^{k}$ and any pattern P on $\mathbb{Z}^{d} \cap \partial_{\mathbb{I}}^{\perp} J$, there is $w \in A^{k}$ such that $f^{k} w$ belongs to $C\left(P, \mathbb{Z}^{d} \cap \partial_{\mathbb{I}}^{\perp} J\right)$.
Proof. For any $j \in \partial_{\mathbb{I}}^{\perp} J$ we let P_{j} be the restriction of $P=\left(p_{l}\right)_{l \in \partial^{\perp} J}$ to $\left\{j^{\prime}, j^{\prime} \prec j\right\}$. We show now by induction on $j \in \mathbb{Z}^{d} \cap \partial^{\perp} J$ that there is $w \in A^{k}$ with $f^{k} w \in C\left(P_{j}\right)$. By Lemma 11 the CA f^{k} is permutative at $k u^{F_{j}}$ so that we may change the $\left(j+k u^{F_{j}}\right)^{\text {th }}$-coordinate of w to get $w^{\prime} \in X$ with $\left(f^{k} w^{\prime}\right)_{j}=p_{j}$. Moreover the j^{\prime}-coordinates of $f^{k} w$ for $j^{\prime} \prec j$ only depends on the coordinates of w on $\left\{j^{\prime}, j^{\prime} \prec j\right\} \oplus k \mathbb{I}$ so that by Lemma 12 we still have $f^{k} w^{\prime} \in C\left(P_{j},\left\{j^{\prime}, j^{\prime} \prec j\right\}\right)$, thus $f^{k} w^{\prime} \in C\left(P_{j^{\prime \prime}}\right)$ with $j^{\prime \prime}$ being the successor of j for \prec in $\mathbb{Z}^{d} \cap \partial^{\perp} J$.

Lemma 14. Let T^{\prime} and $T_{R}^{\prime}, R>0$ be the polytopes associated to \mathbb{I} as defined in Subsection 3.5. We have

$$
\mathcal{F}\left(T^{\prime}\right)=\mathcal{F}_{\mathbb{I}}\left(T^{\prime}\right)
$$

and

$$
\forall R>0, \mathcal{F}_{1}\left(T_{R}^{\prime}\right) \subset \mathcal{F}_{\mathbb{I}}\left(T_{R}^{\prime}\right)
$$

Proof. Let $F \in \mathcal{F}\left(T^{\prime}\right)$ or $F \in \mathcal{F}_{1}\left(T_{R}^{\prime}\right)$. Such a face F is tangent to $S_{I^{\prime}}$ at some $u \in \operatorname{ex}(\mathbb{I})$ with $u \cdot N^{F}=h_{\mathbb{I}}\left(N^{F}\right)$. Then any v with $v \cdot N^{F}=h_{\mathbb{I}}\left(N^{F}\right)$ belongs to T_{F}. But $T_{F} \cap \mathbb{I} \subset T_{F} \cap S_{I^{\prime}}=$ $\{u\}$, therefore we have necessarily $u_{F}=u$.

We are now in a position to prove Proposition 17.
Proof of Proposition 17. The inequality $h_{\text {top }}^{d}(f) \leq R_{I^{\prime}} \log |\mathcal{A}|$ follows immediately from Proposition 16 and Proposition 7. By Lemma 13 we have for any convex d-polytope O and any positive integer n

$$
\forall A^{k} \in \mathrm{P}_{n O}^{k}, \sharp\left\{A^{k+1} \in \mathrm{P}_{n O}^{k+1}, A^{k+1} \subset A^{k}\right\} \geq \sharp \partial^{\perp} n O .
$$

Consequently we have

$$
\begin{aligned}
h_{t o p}\left(f, \mathrm{P}_{n O}\right) & \geq \sharp \partial^{\perp} n O \log |\mathcal{A}|, \\
h_{\text {top }}^{d}\left(f, \mathcal{J}_{O}\right) & \geq \limsup _{n} \frac{\sharp \partial^{\perp} n O}{n^{d-1} p(O)} \log |\mathcal{A}| .
\end{aligned}
$$

We first assume that $S_{\mathbb{I}}=S_{I^{\prime}}$ is nondegenerated. Let T^{\prime} be the dual polytope of a generating polytope T. Note that T^{\prime} is a convex body with nonempty interior containing 0 (but the origin does not lie necessarily in its interior set). By Lemma 14 we have $\mathcal{F}\left(T^{\prime}\right)=$
$\mathcal{F}_{\mathbb{I}}\left(T^{\prime}\right)$, therefore $\mathcal{F}\left(n T^{\prime}\right)=\mathcal{F}_{\mathbb{I}}\left(n T^{\prime}\right)$ and $\partial^{\perp} n T^{\prime}=\partial^{-} n T^{\prime}$ for all n. Applying then Lemma 2 we get for some constant $c=c(d)$:

$$
\begin{aligned}
h_{\text {top }}^{d}\left(f, \mathcal{J}_{T^{\prime}}\right) & \geq \limsup _{n} \frac{\sharp \partial^{-} n T^{\prime}}{n^{d-1} p\left(T^{\prime}\right)} \log |\mathcal{A}|, \\
& \geq \frac{V_{\mathbb{I}}\left(T^{\prime}\right)}{p\left(T^{\prime}\right)} \log |\mathcal{A}|-c .
\end{aligned}
$$

Then it follows from Proposition 7 that:

$$
h_{t o p}^{d}\left(f, \mathcal{J}_{T^{\prime}}\right) \geq R_{\mathbb{I}} \log |\mathcal{A}|-c
$$

For any positive integer k the above equality also holds for f^{k} and \mathbb{I}_{k} in place of f and \mathbb{I}. Moreover we have $\mathbb{I}_{k}=k \mathbb{I}$ according to Lemma 11 , so that we get together with the power formula of Lemma 7 and $\widetilde{T^{\prime}}=p\left(T^{\prime}\right)^{-\frac{1}{d-1}} T^{\prime} \in \mathcal{D}^{1}$:

$$
\begin{aligned}
h_{t o p}^{d}\left(f, \widetilde{T^{\prime}}\right) & =\frac{h_{t o p}^{d}\left(f^{k}, \widetilde{T^{\prime}}\right)}{k}, \\
& \geq \frac{R_{\mathbb{I}_{k}}}{k} \log |\mathcal{A}|-\frac{c}{k} \\
& \geq \frac{R_{k \mathbb{I}}}{k} \log |\mathcal{A}|-\frac{c}{k} \\
& \geq R_{\mathbb{I}} \log |\mathcal{A}|-\frac{c}{k} \\
h_{\text {top }}^{d}\left(f, T^{\prime}\right) & \geq R_{I^{\prime}} \log |\mathcal{A}|
\end{aligned}
$$

This conclude the proof in the nondegenerated case.
We deal now with the degenerated case. By Lemma 14 we have for all $R>0$ with the notations of Subsection 3.5 :

$$
h_{\text {top }}^{d}\left(f, \mathcal{J}_{T_{R}^{\prime}}\right) \geq \limsup _{n} \frac{\sharp \partial^{-} n T_{R}^{\prime}-\sum_{F \in \mathcal{F}_{2}\left(T_{R}^{\prime}\right)} \sharp \partial^{-} n F}{p\left(n T_{R}^{\prime}\right)} \log |\mathcal{A}| .
$$

But for $F \in \mathcal{F}_{2}\left(T_{R}^{\prime}\right)$ we have

$$
\begin{aligned}
\sharp \partial^{-} n F & \leq V\left(\partial^{-} n F \oplus \mathrm{C}\right), \\
& =n^{d-1} \operatorname{diam}(\mathbb{I}) O\left(R^{l-1}\right)
\end{aligned}
$$

Since $\lim _{R \rightarrow \infty} \frac{p\left(T_{R}^{\prime}\right)}{R^{l}}=\mathcal{H}_{d-l}\left(L^{\prime}\right)>0$ and $\left|\mathcal{F}_{2}\left(T_{R}^{\prime}\right)\right|=2 l$, we get

$$
\limsup _{n} \frac{\sum_{F \in \mathcal{F}_{2}\left(T_{R}^{\prime}\right)} \sharp \partial^{-} n F}{p\left(n T_{R}^{\prime}\right)}=\operatorname{diam}(\mathbb{I}) O\left(R^{-1}\right) .
$$

Together with Proposition 2 we get for some constant $c=c(d)$:

$$
h_{\text {top }}^{d}\left(f, \mathcal{J}_{T_{R}^{\prime}}\right) \geq\left(V_{\mathbb{I}}\left(T_{R}^{\prime}\right)-c-\operatorname{diam}(\mathbb{I}) O\left(R^{-1}\right)\right) \log |\mathcal{A}| .
$$

We conclude as in the degenerated case by using the power rule. Fix $\epsilon>0$ and let $k>c \epsilon^{-1}$. We obtain finally

$$
\begin{aligned}
h_{\text {top }}^{d}\left(f, \widetilde{T_{R}^{\prime}}\right) & =\frac{h_{\text {top }}^{d}\left(f^{k}, \widetilde{T_{R}^{\prime}}\right)}{k} \\
& \geq\left(\frac{V_{\mathbb{I}_{k}}\left(T_{R}^{\prime}\right)}{k p\left(T_{R}^{\prime}\right)}-\epsilon-\frac{\operatorname{diam}\left(\mathbb{I}_{k}\right)}{k} O\left(R^{-1}\right)\right) \log |\mathcal{A}| \\
& \geq\left(\frac{V_{\mathbb{I}}\left(T_{R}^{\prime}\right)}{p\left(T_{R}^{\prime}\right)}-\epsilon-\operatorname{diam}(\mathbb{I}) O\left(R^{-1}\right)\right) \log |\mathcal{A}| \\
& \xrightarrow{R \rightarrow+\infty}\left(R_{I^{\prime}}-\epsilon\right) \log |\mathcal{A}|
\end{aligned}
$$

8. Rescaled topological entropy for endomorphisms of \mathbb{Z}^{d}-ACtions

Let X be a compact metric space endowed with a \mathbb{Z}^{d}-action τ. A discrete system $(\mathbb{N}$ action) $f: X \rightarrow X$ is called an endomorphism of (X, τ) when f commutes with the \mathbb{Z}^{d}-action τ. We may define the rescaled topological entropy for any endomorphism f of a \mathbb{Z}^{d}-action (X, τ) as follows. For an open (finite) cover \mathcal{U} of X and any convex exhaustion $\mathcal{J}=\left(J_{n}\right)_{n}$ we first let

$$
\begin{gathered}
h_{t o p}^{\tau}(f, \mathcal{U}, \mathcal{J})=\limsup _{n} \frac{h_{t o p}\left(f, \bigvee_{k \in J_{n} \cap \mathbb{Z}^{d}} \tau^{-k} \mathcal{U}\right)}{p\left(J_{n}\right)}, \\
h_{\text {top }}^{\tau}(f, \mathcal{J})=\sup _{\mathcal{U}} h_{\text {top }}^{\tau}(f, \mathcal{U}, \mathcal{J})
\end{gathered}
$$

Then for any $O \in \mathcal{D}^{1}$

$$
h_{\text {top }}^{\tau}(f, O)=\sup _{\mathcal{J} \in \mathcal{E}(O)} h_{\text {top }}^{\tau}(f, \mathcal{J})
$$

and

$$
h_{\text {top }}^{\tau}(f)=\sup _{\mathcal{U}, \mathcal{J}} h_{\text {top }}^{\tau}(f, \mathcal{U}, \mathcal{J})\left(=\sup _{\mathcal{J}} h_{\text {top }}^{\tau}(f, \mathcal{J})=\sup _{O \in \mathcal{D}^{1}} h_{\text {top }}^{\tau}(f, O)\right) .
$$

Lemma 15. The rescaled entropies $h_{\text {top }}^{\tau}(f), h_{\text {top }}^{\tau}(f, O)$ and $h_{\text {top }}^{\tau}(f, \mathcal{J})$ are invariant under conjugacy for the \mathbb{N}-action of f and the \mathbb{Z}^{d}-action of τ.
Proof. Clearly it is enough to consider $h_{\text {top }}^{\tau}(f, \mathcal{J})$ for some convex exhaustion $\mathcal{J}=\left(J_{n}\right)_{n}$. Let $\psi: X \rightarrow Y$ be an homeomorphism. We check that $h_{\text {top }}^{\tau}(f, \mathcal{J})=h_{\text {top }}^{\tau^{\prime}}(g, \mathcal{J})$ with $g=\psi \circ f \circ \psi^{-1}$ being the endomorphism of the \mathbb{Z}^{d}-action τ^{\prime} on Y given by $\tau^{\prime}=\psi \circ \tau \circ \psi^{-1}$. For any open cover \mathcal{U} of X we have with $\mathcal{V}=\psi(\mathcal{U})$:

$$
\begin{aligned}
h_{\text {top }}^{\tau}(f, \mathcal{U}, \mathcal{J}) & =\limsup _{n} \frac{h_{\text {top }}\left(f, \bigvee_{k \in J_{n} \cap \mathbb{Z}^{d}} \tau^{-k} \mathcal{U}\right)}{p\left(J_{n}\right)} \\
& =\limsup _{n} \frac{h_{t o p}\left(g, \bigvee_{k \in J_{n} \cap \mathbb{Z}^{d}} \tau^{\prime-k} \mathcal{V}\right)}{p\left(J_{n}\right)} \\
& =h_{\text {top }}^{\tau^{\prime}}(g, \mathcal{V}, \mathcal{J})
\end{aligned}
$$

The map $\mathcal{U} \mapsto \psi(\mathcal{U})$ is a bijection between open covers of X and Y. Therefore we get $h_{\text {top }}^{\tau}(f, \mathcal{J})=h_{\text {top }}^{\tau^{\prime}}(g, \mathcal{J})$.

Remark 18. (i) If Y is a a compact subset of X invariant under f and τ, then the restriction f_{Y} of f to Y satisfies $h_{\text {top }}^{\tau}\left(f_{Y}, \mathcal{J}\right) \leq h_{\text {top }}^{\tau}(f, \mathcal{J})$ for any convex exhaustion \mathcal{J}.
(ii) By following straightforwardly the proofs in Section 5.3 we get again $h_{\text {top }}^{\tau}(f, O)=$ $h_{\text {top }}^{\tau}\left(f, \mathcal{J}_{O}\right)$ and $h_{\text {top }}^{\tau}\left(f^{k}, O\right)=k h_{\text {top }}^{\tau}(f, O)$ for any $k \in \mathbb{N}$ and any $O \in \mathcal{D}^{1}$.
Let $\tau_{1}, \cdots, \tau_{d}$ be the commuting transformations on X generating the \mathbb{Z}^{d}-action τ, i.e. $\tau^{k}=\tau_{1}^{k_{1} \circ \cdots \circ \tau_{d}^{k_{d}} \text { for any integer } d \text {-tuple } k=\left(k_{1}, \cdots, k_{d}\right) \text {. For an integer matrix } A=\left(a_{i j}\right)_{i, j} \in, ~(2)}$ $M_{d}(\mathbb{Z})$ with non-zero determinant, we let τ_{A} be the \mathbb{Z}^{d}-action generated by $\tau^{l_{1}}, \cdots, \tau^{l_{d}}$ with l_{1}, \cdots, l_{d} being the columns of A. Then $\tau_{A}^{k}=\tau^{A k}$ for any integer d-tuple k. Let \mathbb{B}^{d} be the unit Euclidean ball of \mathbb{R}^{d}.
Lemma 16. With the previous notations, we have for any $O \in \mathcal{D}^{1}$:

$$
h_{t o p}^{\tau_{A}}(f, O)=\operatorname{det}(A) h_{t o p}^{\tau}(f, \widetilde{A O}) \int h_{A^{-1} \mathbb{B}^{d}} d \sigma_{O}
$$

Proof. Firstly we observe that $p(A J)=\operatorname{det}(A) \int h_{A^{-1 \mathbb{B}^{d}}} d \sigma_{J}$ for any convex domain J. Indeed, it follows from Proposition 3 that :

$$
\begin{aligned}
p(A J) & =\lim _{\rho \rightarrow 0} \frac{V\left(A J \oplus \rho \mathbb{B}^{d}\right)-V(A J)}{\rho} \\
& =\lim _{\rho \rightarrow 0} \frac{V\left(A\left(J \oplus \rho A^{-1} \mathbb{B}^{d}\right)-V(A J)\right.}{\rho} \\
& =\operatorname{det}(A) \lim _{\rho \rightarrow 0} \frac{V\left(J \oplus \rho A^{-1} \mathbb{B}^{d}\right)-V(J)}{\rho} \\
& =\operatorname{det}(A) \int h_{A^{-1} \mathbb{B}^{d}} d \sigma_{J}
\end{aligned}
$$

For any subset J of \mathbb{R}^{d} and $x \in J$ there is $y \in(J \oplus \mathbb{C}) \cap \mathbb{Z}^{d}$ with $\|x-y\| \leq \sqrt{d}$. In particular we have $\left.A J \cap \mathbb{Z}^{d} \subset B_{J}:=\{-\lceil\sqrt{d}\|A\|\rceil\rceil, \cdots,-\lceil\sqrt{d}\|A\| \|\rceil\right\} \oplus A\left((J \oplus \mathrm{C}) \cap \mathbb{Z}^{d}\right)$.

Let \mathcal{U} be an open cover of X and put $\mathcal{U}_{A}=\bigvee_{|k| \leq\lceil\sqrt{d}\|A\| \|\rceil} \tau^{-k} \mathcal{U}$. Let $\mathcal{J} \in \mathcal{E}(O)$. We recall that $\mathcal{J} \oplus \mathrm{C}:=\left(J_{n} \oplus \mathrm{C}\right)_{n}$ defines a convex exhaustion in $\mathcal{E}(O)$ with $p\left(J_{n} \oplus \mathrm{C}\right) \sim^{n} p\left(J_{n}\right)$. Then we have:

$$
\begin{aligned}
h_{t o p}^{\tau_{A}}\left(f, \mathcal{U}_{A}, \mathcal{J} \oplus \mathrm{C}\right) & =\limsup _{n} \frac{h_{t o p}\left(f, \bigvee_{k \in\left(J_{n} \oplus \mathrm{C}\right) \cap \mathbb{Z}^{d}} \tau_{A}^{-k} \mathcal{U}_{A}\right)}{p\left(J_{n} \oplus \mathrm{C}\right)} \\
& =\limsup _{n} \frac{h_{t o p}\left(f, \bigvee_{k \in A\left(\left(J_{n} \oplus \mathrm{C}\right) \cap \mathbb{Z}^{d}\right)} \tau^{-k} \mathcal{U}_{A}\right)}{p\left(J_{n}\right)} \\
& =\limsup _{n} \frac{h_{t o p}\left(f, \bigvee_{k \in B_{J_{n}}} \tau^{-k} \mathcal{U}\right)}{p\left(J_{n}\right)}, \\
& \geq \limsup _{n} \frac{h_{t o p}\left(f, \bigvee_{k \in A J_{n} \cap \mathbb{Z}^{d}} \tau^{-k} \mathcal{U}\right)}{p\left(J_{n}\right)}, \\
& \geq \operatorname{det}(A) \limsup _{n}\left(\frac{h_{t o p}\left(f, \bigvee_{k \in A J_{n} \cap \mathbb{Z}^{d}} \tau^{-k} \mathcal{U}\right)}{p\left(A J_{n}\right)} \int h_{A^{-1} \mathbb{B}^{d}} d \sigma_{\widetilde{J_{n}}}\right) \\
& \geq \operatorname{det}(A) h_{t o p}^{\tau}(f, \mathcal{U}, A \mathcal{J}) \int h_{A^{-1} \mathbb{B}^{d}} d \sigma_{O}
\end{aligned}
$$

As the map $\mathcal{J}=\left(J_{n}\right)_{n} \mapsto A \mathcal{J}=\left(A J_{n}\right)_{n}$ is a bijection from $\mathcal{E}(O)$ to $\mathcal{E}(\widetilde{A O})$, we get by taking the supremum over \mathcal{U} and $\mathcal{J} \in \mathcal{E}(O)$:

$$
h_{t o p}^{\tau_{A}}(f, O) \geq \operatorname{det}(A) h_{t o p}^{\tau}(f, \widetilde{A O}) \int h_{A^{-1} \mathbb{B}^{d}} d \sigma_{O} .
$$

In the same way the other inequality is obtained (more easily) by observing that $A J \cap \mathbb{Z}^{d} \supset$ $A\left(J \cap \mathbb{Z}^{d}\right)$ for any subset J.

For $A=k \operatorname{Id}$ with $k \in \mathbb{N}$ we get $h_{\text {top }}^{\tau_{A}}(f, O)=k^{d-1} h_{\text {top }}^{\tau}(f, \widetilde{A O})$ and therefore $h_{\text {top }}^{\tau_{A}}(f)=$ $k^{d-1} h_{\text {top }}^{\tau}(f)$. In particular the rescaled entropy may be not invariant under topological conjugacy of the \mathbb{N}-action of the endomorphism f when the conjugacy does not preserve the \mathbb{Z}^{d}-action.

The \mathbb{Z}^{d}-action (X, τ) is said expansive when there is an open cover \mathcal{U} such that the cover $\bigcap_{k \in \mathbb{Z}^{d}} \tau^{-k} \mathcal{U}$ is the partition into singletons. Such an open cover \mathcal{U} is called a τ-generator.

Lemma 17. Assume (X, τ) is expansive and let \mathcal{U} be a τ-generator. Then for any $O \in \mathcal{D}^{1}$

$$
h_{\text {top }}^{\tau}(f, O)=\sup _{\mathcal{J} \in \mathcal{E}(O)} h_{\text {top }}^{\tau}(f, \mathcal{U}, \mathcal{J})
$$

Proof. Let \mathcal{V} be an open cover of X. There is a bounded subset I of \mathbb{Z}^{d} such that the open cover $\bigvee_{k \in I} \tau^{-k} \mathcal{U}$ is finer that \mathcal{V}. Let $\mathcal{J}=\left(J_{n}\right)_{n} \in \mathcal{E}(O)$ for $O \in \mathcal{D}^{1}$. Then we get :

$$
\begin{aligned}
h_{\text {top }}^{\tau}(f, \mathcal{U}, \mathcal{J} \oplus I) & =\limsup _{n} \frac{h_{\text {top }}\left(f, \bigvee_{k \in\left(J_{n} \oplus I\right) \cap \mathbb{Z}^{d}} \tau^{-k} \mathcal{U}\right)}{p\left(J_{n} \oplus I\right)} \\
& =\limsup _{n} \frac{h_{t o p}\left(f, \bigvee_{k \in J_{n} \cap \mathbb{Z}^{d}} \tau^{-k}\left(\bigvee_{l \in I} \tau^{-l} \mathcal{U}\right)\right)}{p\left(J_{n}\right)} \\
& \geq \limsup _{n} \frac{h_{\text {top }}\left(f, \bigvee_{k \in J_{n} \cap \mathbb{Z}^{d}} \tau^{-k} \mathcal{V}\right)}{p\left(J_{n}\right)} \\
& \geq h_{\text {top }}^{\tau}(f, \mathcal{V}, \mathcal{J}) .
\end{aligned}
$$

By taking the supremum over convex exhaustions $\mathcal{J} \in \mathcal{E}(O)$ and open covers \mathcal{V} of X, we get $\sup _{\mathcal{J} \in \mathcal{E}(O)} h_{\text {top }}^{\tau}(f, \mathcal{U}, \mathcal{J}) \geq h_{\text {top }}^{\tau}(f, O)$. This concludes the proof of the lemma as the other inequality follows straightforwardly from the definition of $h_{\text {top }}^{\tau}(f, O)$.

For a CA we recover the definition of rescaled entropy of Section 5 by considering the generator given by the zero-coordinate partition.

An algebraic \mathbb{Z}^{d}-action τ is a \mathbb{Z}^{d}-action by automorphisms of a compact abelian group X. By Pontryagin duality, there is a one-to-one correspondence between algebraic \mathbb{Z}^{d}-actions and modules M over the ring $R_{d}=\mathbb{Z}\left[u_{1}^{ \pm 1}, \cdots, u_{d}^{ \pm 1}\right]$. The \mathbb{Z}^{d}-shift on $X_{p}=\left(\mathbb{F}_{p}\right)^{\mathbb{Z}^{d}}$ (resp. $\left.X_{\infty}=(\mathbb{R} / \mathbb{Z})^{\mathbb{Z}^{d}}\right)$ is associated to the module $M=\widehat{X_{p}}=R_{d} /<p>$ with p a rational prime (resp. $M=\widehat{X_{\infty}}=R_{d}$). Then algebraic endomorphisms of these \mathbb{Z}^{d}-actions, i.e. group homomorphisms $f: X \rightarrow X$ commmuting with the \mathbb{Z}^{d}-action, are given by algebraic CA. As a consequence of Theorem 1 we get :
Corollary 19. Let $f \neq \pm \mathrm{Id}, 0$ be an algebraic $C A$ on X_{∞}. Then we have

$$
h_{t o p}^{d}(f)=+\infty
$$

Proof. For some finite family $\left(a_{i}\right)_{i \in I}$ in \mathbb{Z}^{*} we have :

$$
\forall\left(x_{j}\right)_{j} \in(\mathbb{R} / \mathbb{Z})^{\mathbb{Z}^{d}}, f\left(\left(x_{j}\right)_{j}\right)=\left(\sum_{i \in I} a_{i} x_{i+j}\right)_{j}
$$

We first consider the case $I \neq\{0\}$. Then for some arbitrarily large rational prime p, the domain of the algebraic $\mathrm{CA} f_{p}$ on $\left(\mathbb{F}_{p}\right)^{\mathbb{Z}^{d}}$ associated to the family $\left(\overline{a_{i}}\right)_{i \in I}$ in \mathbb{F}_{p} is also non trivial and therefore $h_{\text {top }}^{d}\left(f_{p}\right) \geq \frac{\log p}{2}$. But $\left(X_{p}, f_{p}\right)$ is conjugated for the \mathbb{N} - and \mathbb{Z}^{d}-actions to the subsystem $\left(Y, f_{Y}\right)$ of $\left(X_{\infty}, f\right)$ with $Y=\left(\frac{1}{p} \mathbb{Z} / \mathbb{Z}\right)^{\mathbb{Z}^{d}} \subset X_{\infty}$. By Lemma 15 and Remark 18 (i) we conclude $h_{\text {top }}^{d}(f)=+\infty$.

Finally assume $I=\{0\}$ and $a_{0} \neq \pm 1$. Let $f_{a_{0}}$ be the $\times a_{0}$ circle map. We consider an open cover \mathcal{U} of \mathbb{R} / \mathbb{Z} with $h_{\text {top }}\left(f_{a_{0}}, \mathcal{U}\right) \simeq h_{\text {top }}\left(f_{a_{0}}\right)=\log \left|a_{0}\right|$. Let $\mathcal{V}=\mathcal{U} \times(\mathbb{R} / \mathbb{Z})^{\mathbb{Z}^{d} \backslash\{0\}}$ be the induced zero-coordinate cover of X_{∞}. Then we have for any convex exhaustion $\mathcal{J}=\left(J_{n}\right)_{n}$:

$$
\begin{aligned}
h_{t o p}\left(f, \bigvee_{k \in J_{n} \cap \mathbb{Z}^{d}} \sigma^{-k} \mathcal{V}\right) & \simeq \sharp J_{n} h_{t o p}\left(f_{a_{0}}\right), \\
& \simeq \sharp J_{n} \log \left|a_{0}\right|, \\
h_{\text {top }}^{d}(f, \mathcal{V}, \mathcal{J}) & =\limsup _{n} \frac{h_{t o p}\left(f, \bigvee_{k \in J_{n} \cap \mathbb{Z}^{d}} \sigma^{-k} \mathcal{V}\right)}{p\left(J_{n}\right)}, \\
& =\log \left|a_{0}\right| \lim _{n} \sup _{\sharp J_{n}}^{p\left(J_{n}\right)}=+\infty .
\end{aligned}
$$

Note that we clearly have $h_{\text {top }}^{d}(f)=0$ for $a_{0} \in\{ \pm 1\}$ and $I=\emptyset(f \equiv 0)$.
Question. Does the formula of the rescaled entropy for algebraic CA obtained in Theorem 1 generalize to algebraic endomorphisms of other \mathbb{Z}^{d}-actions (associated to modules $M \neq$ $\left.R_{d}, R_{d} /<p>\right)$?

Remark 20. We only deal in this last section with the generalization of the rescaled topological entropy, but one may also define similarly a measure theoretical rescaled entropy for general endomorphisms of \mathbb{Z}^{d}-actions.

References

[1] F. Blanchard, P. Tisseur, Entropy rate of higher-dimensional cellular automata, 2012. hal-00713029
[2] Bokowski, J., H. Hadwiger and J.M. Will, Eine Ungleichung zwischen Volumen, Obcrflache and Gitterpunktanzahl konvexer Korper im n-dimensionalen euklidischen Raum, Math. Z. 127, 363-364 (1972).
[3] T. Bonnesen and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith.
[4] Chakerian, G. D.; Sangwine-Yager, J. R., A generalization of Minkowski's inequality for plane convex sets. Geom. Dedicata 8 (1979), no. 4, 437444.
[5] M. Damico, G. Manzini, L. Margara, On computing the entropy of cellular automata, Theoretical Comput. Sci. 290, 1629-1646 (2003).
[6] Gritzmann, Peter; Wills, Jrg M, Lattice points. Handbook of convex geometry, Vol. A, B, 765797, North-Holland, Amsterdam, 1993.
[7] Gruber, Peter M, Convex and discrete geometry. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 336. Springer, Berlin, 2007.
[8] Hlawka, E., Uber Integrale auf konvexen Korpern. I, II, Monatsh. Math. 54 (1950) 136, 8199
[9] E. L. Lakshtanov, E. S. Langvagen, Entropy of Multidimensional Cellular Automata Problemy Peredachi Informatsii, 2006, 42:1, 4351
[10] Lakshtanov, E. L.; Langvagen, E. S., A criterion for the infinity of the topological entropy of multidimensional cellular automata. (Russian) Problemy Peredachi Informatsii 40 (2004), no. 2, 7072; translation in Probl. Inf. Transm. 40 (2004), no. 2, 165167
[11] Lindenstrauss, Elon, Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes tudes Sci. Publ. Math. No. 89 (1999), 227262 (2000)
[12] Matheron, G., La formule de Steiner pour les érosions. (French) J. Appl. Probability 15 (1978), no. 1, 126135.
[13] Meyerovitch, T, Finite entropy for multidimensional cellular automata, Erg.Th.Dyn.Sys. 2! (2008), 1243-1260.
[14] John Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988), 357386.
[15] G. Morris, T. Ward, Entropy bounds for endomorphisms commuting with K actions, Israel J. Math. 106 (1998) 1-12.
[16] Hedlund, Gustav A., Endomorphisms and Automorphisms of the Shift Dynamical Systems, Mathematical System Theory, 3 (4): 320375 (1969),
[17] K. Schmidt, Automorphisms of compact abelian groups and affine varieties, Proc. London Math. Soc. 61 (1990), 480-496.
[18] Shereshevsky M A 1991, Lyapunov exponents for one-dimensional cellular automata, J. Nonlinear Sci. 218
[19] M. Shinoda, M. Tsukamoto, Symbolic dynamics in mean dimension theory, arXiv:1910.00844, to appear in Erg.Th.Dyn.Sys. DOI 10.1017/etds.2020.47
[20] Tisseur, P.(F-CNRS-IML) Cellular automata and Lyapunov exponents. (English summary) Nonlinearity 13 (2000), no. $5,15471560$.
[21] Thomas B. Ward, Additive Cellular Automata and Volume Growth, Entropy 2000, 2, 142-167
[22] D. Ornstein and B. Weiss Entropy and isomorphism theorems for actions of amenable groups J. dAnal. Math., 48 (1987), 1141.
[23] Willson, Stephen J. On the ergodic theory of cellular automata. Math. Systems Theory 9 (1975), no. $2,132141$.

Sorbonne Universite, LPSM, 75005 Paris, France
E-mail address: david.burguet@upmc.fr

