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Abstract. For a d-dimensional cellular automaton with d ≥ 1 we introduce a rescaled

entropy which estimates the growth rate of the entropy at small scales by generalizing pre-
vious approaches [1, 9]. We also define a notion of Lyapunov exponent and proves a Ruelle

inequality as already established for d = 1 in [20, 18]. Finally we generalize the entropy

formula for 1-dimensional permutative cellular automata [21] to the rescaled entropy in
higher dimensions. This last result extends recent works [19] of Shinoda and Tsukamoto

dealing with the metric mean dimensions of two-dimensional symbolic dynamics.

1. Introduction

In this paper we estimate the dynamical complexity of multidimensional cellular automata.
In the following the main results will be stated in a more general setting, but let us focus in

this introduction on the following algebraic cellular automaton on (Fp)Z
d

with p prime given
for some finite family (ai)i∈I in F∗p, I ⊂ Zd, by

∀(xj)j ∈ (Fp)Z
d

, f((xj)j) =

(∑
i∈I

aixi+j

)
j

.

Let I ′ = I ∪{0}. For d = 1 the topological entropy of f is finite and equal to diam(I ′) log p
where diam(I ′) denotes the diameter of I ′ for the usual distance on R [21]. However in higher
dimensions the topological entropy of f is always infinite unless I = {0} [15, 10]. Moreover
the topological entropy of the N×Zd-action given by f and the shift vanishes. It was expected
that the topological entropy of any cellular automaton for d > 1 was either zero or infinity,
but T. Meyerovitch built a two-dimensional counterexample [13].

In this paper we investigate the growth rate of (htop(f,PJn))n for nondecreasing sequences

(Jn) of convex subsets of Rd where (PJn)n denotes the clopen partitions into Jn ∩ Zd-
coordinates. This sequence appears to increase as the perimeter p(Jn) of Jn. We define

the rescaled entropy hdtop(f) of f as lim supJn
htop(f,PJn )

p(Jn)
. In [9] another renormalization is

used, whereas in [1] the authors only investigate the case of squares Jn = [−n, n]2, n ∈ N.

For d = 1 we get h1top(f) =
htop(f)

2 . We generalize the entropy formula for algebraic cellular
automata as follows :

Theorem 1. Let f be an algebraic cellular automaton on (Fp)Z
d

as above, then

hdtop(f) = RI′ log p,

where RI′ denotes the radius of the smallest bounding sphere containing I ′.

In fact we establish such a formula for any permutative cellular automaton (see Section 7).
In [19] the authors compute, inter alia, the metric mean dimension of the horizontal shift in
Z2 for some standard distances. These dimensions may be interpreted as the rescaled entropy
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with respect to some particular sequence of convex sets (Jn)n. In particular we extend these
results in higher dimensions for general permutative cellular automata.

We also consider a measure theoretical analogous quantity of the rescaled entropy. In
dimension one, a notion of Lyapunov exponent has been defined in [18]. Then Tisseur [20]
proved in this case a Ruelle inequality relating this exponent with the Kolmogorov-Sinai
entropy. In this paper we also introduce a notion of Lyapunov exponent in higher dimensions,
which bounds from above the rescaled entropy of measures.

The paper is organized as follows. In Section 2 we state some measure geometrical proper-
ties of convex sets in Rd. We estimate the cardinality of integer points in the morphological
boundary of large convex sets in Section 3. We recall the dynamical background of cellular
automata in Section 4 and we introduce then a Lyapunov exponent for multidimensional
cellular automata. In Section 5 we define and study the topological and measure theoretical
rescaled entropy. We prove the Ruelle type inequality in Section 6. Section 7 is devoted to
the proof of the entropy formula for permutative cellular automata. Finally we discuss in the
last section a generalization of the rescaled entropy for any endomorphism of a Zd-action.

2. Background on convex geometry

2.1. Convex bodies, domains and polytopes. For a fixed positive integer d we endow
the vector space Rd with its usual Euclidean structure. The associated scalar product (resp.
norm) is simply denoted by · (resp. ‖ ‖) and we let Sd−1 be the unit sphere. For a subset F
of Rd we let F , Int(F ) and ∂F be respectively its closure, interior set and boundary. We let
]F be the number of integer points in F , i.e. ]F = |F ∩ Zd|. We also denote by V (F ) the
d-Lebesgue measure of F (also called the volume of F ) when the set F is Borel.

The extremal set of a convex set J is denoted by ex(J) and the convex hull of F ⊂ Rd by
cv(F ). A convex body is a compact convex set of Rd. A convex body containing the origin
0 ∈ Rd in its interior set is said to be a convex domain. The set of convex bodies endowed
with the Hausdorff topology is a locally compact metrizable space. In the following we denote
by D the set of convex domains endowed with the Hausdorff topology. A convex polytope
(resp. k-polytope with k ≤ d) in Rd is a convex body given by the convex hull of a finite set
(resp. with topological dimension equal to k). When this finite set lies inside the lattice Zd,
the convex polytope is said integral. We let F(P ) be the set of faces of a convex d-polytope
P .

A convex domain J has Lipshitz boundary and finite perimeter p(J). We let D1 be the

subset of D given by convex domains with unit perimeter. We denote by J̃ = p(J)−
1
d−1 ∈ D1

the normalization of a convex domain J . For convex domains the perimeter in the distribu-
tional sense of De Giorgi coincides with the (d−1)-Hausdorff measure Hd−1 of the boundary.
For J ∈ D we let ∂′J be the subset of points x ∈ ∂J , where the tangent space TxJ is well
defined. The set ∂′J has full Hd−1-measure in ∂J . We let NJ(x) ∈ Sd−1 be the unit J-
external normal vector at x ∈ ∂′J . For any x ∈ ∂′J we let T+

x J (resp. T−x J) be the open
external (resp. closed internal) semi-space with boundary TxJ . With these notations we have
J =

⋂
x∈∂′J T

−
x J . For ε ∈ R we denote by T±x J(ε) the semi-planes T±x J(ε) = T±x J + εNJ(x).

When J is a convex d-polytope and F ∈ F(J), we write TF to denote the tangent affine space
supporting F , T±F for the associated semi-spaces and NF for the unit external normal to F .

The support function of a convex body I is the real continuous function hI on Sd−1 :

∀x ∈ Sd−1, hI(x) = max
u∈I

u · x.

The support function completely characterizes the convex body I. The area measure σJ of
a convex domain J is the Borel measure on Sd−1 given by NJ

∗ Hd−1 :

∀B Borel of Sd−1, σJ(B) = Hd−1
(
(NJ)−1B

)
.
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If a sequence (Jn)n in D is converging to J∞ ∈ D (for the Hausdorff topology), then σJn is
converging weakly to σJ∞ , in particular the perimeter of Jn goes to the perimeter of J∞ (see
Proposition 10.2 in [7]). Consequently, D1 is a closed subset of D.

2.2. Convex exhaustions. An exhaustion is a sequence J = (Jn)n∈N of subsets of Rd
satisfying

⋃
n Jn = Rd. In this paper we consider exhaustions J = (Jn)n∈N of convex domains

with p(Jn)
n−→ +∞, such that the sets J̃n = p (Jn)

− 1
d−1 Jn ∈ D1 are converging to a limit

J∞ ∈ D in the Hausdorff topology. Then the limit J∞ has unit perimeter. The sequences
J = (Jn)n satisfying the above properties are said to be convex exhaustions. For O ∈ D1

we denote by E(O) the set of convex exhaustions J = (Jn)n with J∞ = O. Moreover for

O ∈ D we let JO ∈ E(Õ) be the convex exhaustion given by JO := (nO)n.
The inner radius r(E) of a subset E of Rd is the largest a ≥ 0 such that E contains a

Euclidean ball of radius a. For two subsets E and F of Rd we let E∆F be the symmetric
difference of E and F given by E∆F := (E \ F ) ∪ (F \ E).

Lemma 1. Let O ∈ D and J = (Jn)n ∈ E(O). Then any sequence of convex bodies K =

(Kn)n with r (Kn∆Jn) = o
(
p(Jn)

1
d−1

)
belongs to E(O) and p(Kn) ∼n p(Jn).

Proof. We claim that p (Jn)
− 1
d−1 Kn is converging to J∞ in the Hausdorff topology. Then

by taking the perimeter in this limit we get limn
p(Kn)
p(Jn)

= p(J∞) = 1 and therefore K̃n =

p (Kn)
− 1
d−1 Kn also goes to J∞ = O. Let us prove now the claim. Fix an Euclidean ball B

with J∞ ⊂ IntB. It is enough to show that p (Jn)
− 1
d−1 Kn ∩ B is converging to J∞. Indeed

as Kn is convex, this will imply that p (Jn)
− 1
d−1 Kn is contained in B for n large enough (if

not p (Jn)
− 1
d−1 Kn ∩ ∂B is non empty for infinitely many n and therefore we should have

J∞ ∩∂B 6= ∅). By extracting a subsequence we may assume p (Jn)
− 1
d−1 Kn ∩B is converging

to a convex body K∞ and we need to prove K∞ = J∞. We argue by contradiction. As J∞
is a convex domain, we have either Int(J∞) \ K∞ 6= ∅ or Int(K∞) \ J∞ 6= ∅. But for x in

one of these sets, there is s > 0 such that the balls p(Jn)
1
d−1B(x, s) are contained in Kn∆Jn,

therefore r (Kn∆Jn) ≥ sp(Jn)
1
d−1 , for n large enough. �

Remark 2. If ]Kn∆Jn = o
(
p(Jn)

d
d−1

)
then the condition on the inner radius in Lemma 1

holds and therefore K belongs to E(O).

2.3. Internal and external morphological boundary. We recall some terminology of
mathematical morphology used in image processing. For two subsets I and J of Rd, the
dilation (also known as the Minkowski sum) J ⊕ I and the erosion J 	 I of J by I are
defined as follows

J ⊕ I = {i+ j | i ∈ I and j ∈ J},

J 	 I = {j ∈ Rd | ∀i ∈ I, i+ j ∈ J}.
When the origin 0 belongs to I then we have J ⊂ J⊕I and J	I ⊂ J . When J is a convex

body then J 	 I is a convex body. Assume now that I is also a convex body. The dilation
J ⊕ I is then also a convex body with ex(J ⊕ I) ⊂ ex(I)⊕ ex(J). In particular, when I and J
are moreover convex polytopes, then so is J⊕I. We have J	I =

⋂
x∈∂′J T

−
x J

(
hI(−NJ(x))

)
(also J ⊕ I ⊂

⋂
x∈∂′J T

−
x J

(
hI(N

J(x))
)
, but this last inclusion may be strict). When J is a

convex polytope, the above intersection is finite, thus J 	 I is also a convex polytope. The
convex bodies given by the erosion J 	 I and the dilation J ⊕ I are also known as the inner
and outer parallel bodies of J relative to I. We recall that hJ⊕I = hJ + hI . In particular
when I = {i} is a singleton, we get hJ+i(x) = hJ(x) + i · x for all x ∈ Sd−1. In general we
only have hJ	I ≤ hJ − hI .
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The internal and external (morphological) boundaries of J relative to I denoted
respectively by ∂−I J and ∂+I J are given by

∂+I J = (I ⊕ J) \ J,
∂−I J = J \ (J 	 I).

Clearly we have ∂±I J = ∂±I′J with I ′ = I ∪ {0}. When J is a convex domain then we have

∂−I J = ∂−cv(I)J and ∂+I J ⊂ ∂+cv(I)J . In the following the set I will be fixed so that we omit

the index I in the above definitions when there is no confusion.
Finally we observe that r (Jn∆(Jn ⊕ I)) , r (Jn∆(Jn 	 I)) ≤ diam(I ′). Therefore it follows

from Lemma 1, that if (Jn)n is a convex exhaustion and I a convex body then (Jn	 I)n and
(Jn ⊕ I)n define convex exhaustions with the same limit as (Jn)n.

3. Counting integer points in morphological boundary of large convex sets

For a large convex domain J and a fixed integral polytope I we estimate the cardinality
of the integer points in the morphological boundaries of J relative to I.

3.1. First relative quermass integral. Let O be a convex domain and let I be a convex
body. For ρ ∈ R we let

Oρ =

{
O ⊕ ρI when ρ ≥ 0,
O 	 ρI when ρ < 0.

Proposition 3.

lim
ρ→0

V (Oρ)− V (O)

ρ
=

∫
Sd−1

hI dσO.

For ρ > 0 the formula follows from Minkowski’s formula on mixed volume (see Theorem
6.5 and Corollary 10.1 in [7]). For ρ < 0 we refer to [12] (see also Lemma 2 in [4] for the
2-dimensional case).

In the following we denote by VI(O) the integral
∫
Sd−1 hI dσO. The product d · VI(O)

is known as the first I-relative quermass integral of O. For convex bodies I ⊂ H and
k ∈ N, we have VI(O) ≤ VH(O) and VkI(O) = kVI(O) for any convex domain O. The support
function hI being continuous, the first I-relative quermass integral of O is continuous with
respect to the Hausdorff topology, i.e. if (On)n is a sequence of convex domains converging
to a convex domain O∞ in the Hausdorff topology, then we have

VI(On)
n→+∞−−−−−→ VI(O∞).

We deduce now from Proposition 3 an estimate on the volume of the morphological bound-
ary for large convex sets.

Corollary 4. Let I be a convex body containing 0 and let O ∈ D. Then

V
(
∂±I nO

)
∼ nd−1

∫
Sd−1

hI dσO.

Proof. We only consider the case of the external boundary as one may argue similarly for the
internal boundary. For all n > 0 we have

V
(
∂+I nO

)
= V (nO ⊕ I)− V (nO) ,

= nd
(
V (O ⊕ n−1I)− V (O)

)
.

According to Proposition 3 we conclude that

V
(
∂+I nO

)
∼ nd−1

∫
Sd−1

hI dσO.

�
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3.2. Counting integer points in large convex sets. After Gauss circle problem, counting
lattice points in convex sets has been extensively investigated. Let C = [0, 1]d. Clearly for
any Borel subset K of Rd we have always

(3.1) ]K ≤ V (K ⊕ C).

In the other hand, Bokowski, Hadwiger and Wills have proved the following general (sharp)
inequality for any convex domain O [2] :

(3.2) V (O)− p(O)

2
≤ ]O.

There exist precise asymptotic estimates of ]xO for large x > 0 for convex smooth domains
O having positive curvature, in particular we have in this case ]xO = V (xO) + o(xd−1) [8].

3.3. Estimate of ]∂±I nO for O ∈ D. For a real sequence (an)n and two numbers l and c > 0
we write an ∼ l ± c when the accumulation points of (an)n lie in [l − c, l + c].

Lemma 2. There exists a constant c depending only on d such that we have for any convex
domain O ∈ D and any convex body I of Rd with 0 ∈ I :

]∂±I nO

nd−1
∼ VI (O)± c.

Proof. We only argue for ∂+I nO, the other case being similar. We have ]∂+I nO = ]nO ⊕ I −
]nO, and then by combining Equation (3.1) and (3.2) we get :

V (nO ⊕ I)− p(nO ⊕ I)

2
− V (nO + C) ≤ ]∂+I nO ≤ V (nO ⊕ I ⊕ C)− V (nO) +

p(nO)

2
,

After dividing by nd−1, the right (resp. left) hand side term is going to
∫
Sd−1(hI − hC −

1/2) dσO (resp.
∫
Sd−1(hI + hC + 1/2) dσO ) according to Corollary 4. �

3.4. Upperbound of ]∂−Jn for general convex exhaustions. For a subset E of Rd and
for r > 0 we let E(r) := {x ∈ E, d(x, ∂E) ≤ r} with d being the Euclidean distance. With
the previous notations we may also write E(r) = ∂−BrE where Br denotes the Euclidean ball
centered at 0 with radius r.

Lemma 3. For any convex domain J in Rd, we have

V (J(r)) ≤ rp(J).

Proof. We first assume that J is a convex d-polytope. Let x ∈ J(r). There is F ∈ F(J) with
‖x − xF ‖ ≤ d(x, F ) = d(x, ∂J) ≤ r, where xF denotes the orthogonal projection of x onto
TF . Observe that xF belongs to F : if not the segment line [x, xF ] would have a non empty
intersection with ∂J and the intersection point y ∈ ∂J would satisfy ‖x − y‖ < ‖x − xF ‖ ≤
d(x, ∂J). Therefore J(r) ⊂

⋃
F∈F(J)RF (r) with RF (r) := {x−tNF (x), x ∈ F and t ∈ [0, r]}.

Finally we get

V (J(r)) ≤
∑

F∈F(J)

V (RF (r)) ,

≤ rp(J).

For a general convex domain, there is a nondecreasing sequence (Jp)p of convex d-polytopes
contained in J converging to J in the Hausdorff topology. Then the characteristic function of

Jp(r) is converging pointwisely to the characteristic function of J(r), in particular V (Jp(r))
p−→

V (J(r)). Moreover p(Jp) goes to p(J), so that the desired inequality is obtained by taking
the limit in the inequalities for the convex d-polytopes Jp. �
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Proposition 5. For any convex exhaustion (Jn)n in Rd, we have

lim sup
n

]∂−I Jn
p (Jn)

≤ diam(I ′) +
√
d.

Proof. As already observed, we have ]∂−Jn ≤ V (∂−Jn⊕C) with C = [0, 1]d. Let (J ′n)n be the
sequence given by J ′n = Jn ⊕ C for all n. By Lemma 1 this sequence is a convex exhaustion
with p(J ′n) ∼n p(Jn). Moreover ∂−Jn⊕C is contained in J ′n (c) with c = diam(I ′) + diam(C).
Therefore we conclude according to Lemma 3 :

]∂−Jn ≤ V (J ′n(c)) ,

≤ cp(J ′n),

.n cp(Jn).

�

Remark 6. We conjecture that limn
]∂−I Jn
p(Jn)

= VI(J∞) holds for any convex exhaustion (Jn)n

in Rd. We manage to show it only in dimension 2, but we prefer to omit the proof as such
finer estimates are useless in the dynamical applications given in the present paper.

3.5. Supremum of O 7→ VI(O). In this section we investigate the supremum of VI on D1

for a given convex polytope I of Rd. We recall that there is a unique sphere SI containing
I with minimal radius, usually called the smallest bounding sphere of I. We let RI and
xI be respectively the radius and the center of SI . There are at least two distinct points in
SI ∩ I, whenever I is not reduced to a singleton, and SI ∩ I ⊂ ex(I). Moreover we have the
following alternative :

• either there is a finite subset of SI ∩ I generating an inscribable polytope T with
Int(T ) 3 xI (in particular the interior set of I is non empty),

• or there is a hyperplane H containing xI such that I lies in an associated semispace
and SI ∩H is the smallest bounding sphere of I ∩H.

The smallest bounding sphere SI (or I itself) will be said nondegenerated (resp. degen-
erated) and an associated polytope T (resp. hyperplane H) is said generating. For an
inscribable polytope T in Rd we may define its dual T ′ as the polytope given by the inter-
section of the inner semispaces tangent to the circumsphere of T at the vertices of T . In the
following T ′ always denotes the dual polytope of a generating polytope T with respect to I.

When SI is degenerated, there is a sequence of affine spaces H = H1 ⊃ H2 ⊃ · · ·Hl 3 xI
such that I ∩Hl is nondegenerated in Hl and for all 1 ≤ i < l the convex polytope I ∩Hi is
degenerated in Hi with Hi+1 as an associated generating hyperplane (Hi is a d−i dimensional
affine space). We denote by L a generating polytope of I∩Hl in Hl and by L′ its dual polytope
in Hl. Let U be an isometry of Rd mapping Hi for i = 1, · · · , l to {0i}×Rd−i (where 0i denotes
the origin of Ri) with U(xI) = 0. Then for R > 0 we let T ′R := U−1

(
[−R,R]l × U(L′)

)
. The

faces F of T ′R satisfy

(1) either F = U−1
(
[−R,R]l × U(F)

)
for some face F of L′,

(2) or F = U−1
(
[−R,R]l−1 × {±R}i × U(L′)

)
for i = 1, · · · , l (where {±R}i coresponds

to the ith coordinate of the product).

For i = 1, 2 we let Fi(T ′R) be the subset of F(T ′R) given by the faces of the ith category.
Observe that when xI coincides with the origin then T ′ or T ′R, R > 0 are convex domains.

Proposition 7.
sup
O∈D1

VI(O) = RI .

The supremum of VI is achieved if and only if SI is nondegenerated. The supremum is then

achieved at T̃ ′ with T ′ being the dual polytope of a generating polytope T .
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Proof. For any v ∈ Rd we have

VI+v(O) =

∫
hI+v dσO,

=

∫
hI dσO +

∫
Sd−1

v · u dσO(u),

=

∫
hI dσO +

∫
∂O

v ·NO dHd−1.

By the divergence formula we have
∫
∂O

v · NO dHd−1 = 0 for any v ∈ Rd and O ∈ D1.
Therefore we may assume xI = 0. With the above notations we have maxu∈I u · v ≤ RI
for all v ∈ Rd with ‖v‖ = 1 with equality iff v belongs to R−1I I. Therefore VI(O) ≤ RI for
any O ∈ D1. Moreover if the equality occurs then for x in a subset E of ∂O with full Hd−1-
measure, hI

(
NO(x)

)
= maxu∈I u·x = RI and therefore the normal unit vectorNO(x) belongs

to R−1I I. But as O is a convex domain, we may find d + 1 points x1, · · · , xd+1 in E in such
a way the origin belongs to the interior of the simplex T = RI cv

(
NO(x1), · · · , NO(xd+1)

)
.

Thus SI is nondegenerated and the polytope T is a generating polytope with respect to I.
Moreover we have with the above notations∫

hI dσT ′ = RIp(T
′).

Therefore T̃ ′ achieves the supremum of VI on D1. We consider now the degenerated case.
With the above notations, we have hI(N

F ) = RI for any F ∈ F1(T ′R) (recall we assume

xI = 0 without loss of generality). Moreover Hd−1
(⋃

F∈F2(T ′R) F
)

= o(p(T ′R)) when R goes

to infinity. Therefore the renormalization T̃ ′R ∈ D1 of T ′R satisfies

VI(T̃ ′R)
R→+∞−−−−−→ RI .

�

4. Cellular automata

4.1. Definitions. We consider a finite set A. We endow the set A with the discrete topology

and Xd = AZd with the product topology. We consider the Zd-shift σ on AZd defined for
l ∈ Zd and u = (uk)k ∈ Xd by σl(u) = (uk+l)k. Any closed subset X of Xd invariant under
the action of σ is called a Zd-subshift. We fix such a subshift X in the remaining of the
paper.

For a bounded subset J of Rd we consider the partition PJ into J ∩Zd-cylinders, i.e. the
element PxJ of PJ containing x = (xi)i∈Zd ∈ X is given by PxJ := {y = (yi)i∈Zd ∈ X, ∀i ∈
J ∩ Zd yi = xi}. In other terms we may define PJ as the joined partition

∨
j∈J∩Zd σ

−jP0

with P0 being the zero-coordinate partition.
A cellular automaton (CA for short) defined on a Zd-subshift X is a continuous map

f : X → X which commutes with the shift action σ. By a famous theorem of Hedlund [16]
the cellular automaton f is given by a local rule, i.e. there exists a finite subset I of Zd and
a map F : AI → A such that

∀j ∈ Zd (fx)j = F
(
(xj+i)i∈I

)
.

The (smallest) subset I is called the domain of the CA. Recall I ′ = I ∪ {0} and let I be the
convex hull of I ′.
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4.2. Lyapunov exponents for higher dimensional cellular automata. Lyapunov ex-
ponent of one-dimensional cellular automata have been defined in [18, 20]. We develop a
similar theory in higher dimensions. Let f be a CA on a Zd-subshift X with domain I.

Given a convex body J of Rd and x ∈ X, we let

Ef (x, J) := {K convex body, fPxJ ⊂ PfxK }

A priori the family Ef (x, J) does not admit a greatest element for the inclusion. Observe
also that the convex body J 	 I belongs to Ef (x, J), in particular this family is not empty.
Then we let for all x :

grJf(x) := min{] J \K, K ∈ Ef (x, J)}.

The family Ef (x, J) and the function grJf(x) are constant on each atom A of PJ , thus
we let Ef (A, J) and grJf(A) be these quantities. We denote by Df (x, J) the subfamily of
Ef (x, J) consisting in K with ] J \K = grJf(x). For K in Df (x, J) the intersection K ∩ J
defines a convex body, which belongs also to Df (x, J).

For a convex exhaustion J = (Jn)n, we define the growth grJ f with respect to J as the
following real functions on X :

grJ f := lim sup
n

grJnf

p(Jn)
.

Finally we let for a convex domain O ∈ D1 :

grOf = sup
J∈E(O)

grJ f.

Lemma 4. The sequence of functions
(
grOf

k
)
k

is a subadditive cocycle, i.e.

∀k, l ∈ N ∀x ∈ X, grOf
k+l(x) ≤ grOf

l(fkx) + grOf
k(x).

Proof. Fix x ∈ X and k, l ∈ N. Let J = (Jn)n ∈ E(O). We consider a sequence K := (Kn)n
of convex bodies in

∏
nDfk(x, Jn) with Kn ⊂ Jn for all n. Let Ik be the domain of fk. The

convex body Jn 	 Ik belongs to Efk(x, Jn) for all n. By Proposition 5, we have ] Jn \Kn ≤
]∂−IkJn = O (p(Jn)). It follows from Lemma 1 and Remark 2 that K is a convex exhaustion

in E(O) with p(Kn) ∼n p(Jn). We also let L = (Ln)n ∈
∏
nDf l(fkx,Kn) with Ln ⊂ Kn for

all n. Similarly the sequence L belongs to E(O) with p(Ln) ∼n p(Jn). Then we have for all
positive integers n :

fk+lPxJn = f l(fkPxJn),

⊂ f l
(
Pf

kx
Kn

)
,

⊂ Pf
k+lx
Ln

.

Therefore we have

grJnf
k+l(x) ≤ ] Jn \ Ln,

≤ ] Jn \Kn + ]Kn \ Ln,
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then

grJ f
k+l(x) = lim sup

n

grJnf

p(Jn)
,

≤ lim sup
n

grKnf

p(Jn)
+ lim sup

n

grLnf

p(Jn)
,

≤ lim sup
n

grKnf

p(Kn)
+ lim sup

n

grLnf

p(Ln)
,

≤ grKf
k(x) + grLf

l(fkx).

As the sequences K and L lie in E(O) we conclude that

grOf
k+l(x) ≤ grOf

k(x) + grOf
l(fkx).

�

The nonnegative function grOf satisfies grOf ≤ supJ∈E(O) lim supn
]∂−I Jn
p(Jn)

and this last

term is finite according to Proposition 5. Therefore the subadditive ergodic theorem applies :
for any µ ∈M(X, f) the sequence

(
1
ngrOf

n(x)
)
k

converge almost everywhere to a f -invariant

function χO with
∫
χO dµ = lim / infn

1
n

∫
grOf

n dµ. We call the function χO the Lyapunov
exponent of f with respect to O.

Remark 8. The exponent χO for O ∈ D plays somehow the role of the sum of the positive
Lyapunov exponents in smooth dynamical systems.

5. Rescaled entropy of cellular automata

5.1. Definition. We let M(f) (resp. M(f, σ)) be the set of invariant Borel probability
measures on X which are f -invariant (resp. f - and σ-invariant). For a finite clopen partition
P of X we let Htop(P) = log ]P and Hµ(P) = −

∑
A∈P µ(A) logµ(A) with µ ∈ M(f). In the

following the symbol ∗ denotes either ∗ = top or ∗ = µ ∈ M(f). We let h∗(f,P) be the
entropy with respect to the clopen partition P :

h∗(f,P) := lim
n

1

n
H∗

(
n−1∨
k=0

f−kP

)
.

For two partitions P, Q of X, we say P is finer than Q and we write P > Q, when any atom
of P is contained in an atom of Q. The functions H∗(·) and h∗(f, ·) are nondecreasing with
respect to this order.

The rescaled entropy with respect to a convex exhaustion J = (Jn)n is defined as follows

hd∗(f,J ) = lim sup
n

h∗(f,PJn)

p(Jn)
.

In [9] the authors defines a similar notion for the rescaled topological entropy with the renor-
malization factor ]∂−I Jn (which depends on the domain I of f) rather than p(Jn).

Remark 9. For d = 2, when J =
⋃
i∈I Ji is a finite disjoint union of Jordan domains Ji

with Lipshitz boundary, we have

htop(f,PJ)

p(J)
≤
∑
i∈I htop(f,PJi)∑

i∈I p(Ji)
,

≤ sup
i∈I

htop(f,PJi)

p(Ji)
.
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Moreover for each i, we have p(Ji) ≥ p (cv(Ji)) and Pcv(Ji) is finer than PJi . Therefore

htop(f,PJ)

p(J)
≤
∑
i∈I htop(f,PJi)∑

i∈I p(Ji)
,

≤ sup
i∈I

htop(f,Pcv(Ji))

p (cv(Ji))
.

This inequality justifies that we focus on convex bodies J of Rd.

We let also for any O ∈ D1

hd∗(f,O) = sup
J∈E(O)

hd∗(f,J )

and

hd∗(f) = sup
J
hd∗(f,J ),

where the last supremum holds over all convex exhaustions J . For d = 1 we have p(J) = 2
for any convex subset J . Therefore up to a factor 2 we recover the usual definition of entropy,
2h1∗(f) = h∗(f).

Remark 10. As the CA f commutes with the shift action σ we have for all k ∈ Zd and any
subset J of Zd htop(f,PJ+k) = htop(f, σ

−kPJ) = htop(f,PJ) and the same holds for the mea-
sure theoretical entropy with respect to measures in M(f, σ). Let us call generalized convex
domain any convex body with a non empty interior set. Replacing convex domains by gen-
eralized convex domains, we may define generalized convex exhaustions J and the associated
rescaled entropies. Then it follows from the aforementioned invariance by translation of the
entropy, that hdtop(O) = hdtop(O+α) for all α ∈ Rd and all generalized convex domain O with
unit perimeter. Indeed for any (Jn)n ∈ E(O) (resp. E (O + α)) there is a sequence of integers
(kn)n with (Jn + kn)n ∈ E (O + α) (resp. (Jn)n ∈ E(O)).

In a seminal work [14], Milnor investigated the d-dimensional topological entropy of a
compact set O in R × Rd with respect to the N × Zd-action generated by a CA f and the
Zd-shift σ. When O = {0} × O′ for some O′ ∈ D, this d-dimensional entropy ηd(O) may be
written as follows :

ηd(O) = sup
m∈N

(
lim sup

n

1

nd
Htop

(
m−1∨
k=0

f−kPnO′

))
,

whereas another renormalization is used here in the definition of the rescaled entropy with
respect to O′ :

hdtop(f,JO′) = lim sup
n

(
lim
m

1

mnd−1
Htop

(
m−1∨
k=0

f−kPnO′

))
.

These quantities have different behaviour, e.g. ηd(O) is proportional to the d-Lebesgue mea-
sure V (O′) of O′ (Theorem 2 in [14]), but we will see in the proof of Theorem 1 in Section 7
that when the smallest bounding sphere of the domain I of the algebraic CA f is degenerated

then 0 < hdtop(f) = limR→+∞ hdtop(f,JT̃ ′R), but V (T̃ ′R)
R→+∞−−−−−→ 0 (with T ′R ∈ D as defined in

Subsection 3.5).

5.2. Link with the metric mean dimension in dimension two. In a compact metric
space (X, d), the ball of radius ε ≥ 0 centered at x ∈ X will be denoted by Bd(x, ε). For a
continuous map f : X → X we denote by dn the dynamical distance defined for all n ∈ N by

∀x, y ∈ X, dn(x, y) = max{d(fkx, fky), 0 ≤ k < n}.
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The metric mean dimension of f is defined as mdim(f, d) = lim supε→0
htop(f,ε)
| log ε| where htop(f, ε)

denotes the topological entropy at the scale ε > 0 :

htop(f, ε) := lim sup
n

1

n
log min{]C,

⋃
x∈C

Bdn(x, ε) = X}.

The topologial mean dimension is conjectured to be the infimum of mdim(f, d) over all
distances on X (this is known for systems with the marker property). We refer to [11]
for alternative definitions and further properties of mean dimension. The topological mean
dimension of a finite dimensional topological system is null. Here f is a CA on a Zd-subshift
X. In particular it has zero topological mean dimension.

Fix α > 1. To any exhaustion J = (Jn)n of Rd, we may associate an ultrametric distance
dJ on Xd as follows :

∀x = (xk)k∈Zd and y = (yk)k∈Zd , dJ (x, y) = α−max{n∈N, xk=yk ∀k∈Jn}.

Then for n ∈ N the ball BdJ (x, α−n) with respect to dJ coincides with the cylinder PxJn .
Therefore we have for any O ∈ D :

hdtop(f,JO) = lim sup
n

htop(f,PnO)

p(nO)
,

= lim sup
n

htop(f, α
−n)

nd−1p(O)
,

=
(logα)d−1

p(O)
lim sup
ε→0

htop(f, ε)

| log ε|d−1

In particular in dimension two we get :

h2top(f,JO) =
logα

p(O)
mdim(f, dJO ).

For d > 2 the mean dimension mdim(f, dJO ) is infinite whenever the rescaled entropy
hdtop(f,JO) is positive. In [19] the authors compute explicitly the mean dimension of the

particular CA given by the horizontal shift on a Z2-subshift with respect to some metrics of
the form dJO with O being the unit ball of standard norms on Rd.

Remark 11. In [19] the authors also work with a measure theoretical quantity, called the
measure distorsion rate dimension and show a variational principle with the metric mean
dimension of dJO . Does this quantity coincides with µ 7→ h2µ(f,JO) ?

5.3. Monotonicity and Power. We investigate now basic properties of the rescaled entropy.

Lemma 5. For any O ∈ D and any α > 0, we have

hd∗(f,JO) = hd∗(f,JαO).

Proof. For n ∈ N, we let kn = dnαe, thus nO ⊂ knαO and p(nO) ∼n p(knαO). Therefore

hd∗(f,JO) = lim sup
n

h∗(f,PnO)

p(nO)
,

≤ lim sup
n

h∗(f,PknαO)

p(nO)
,

≤ lim sup
n

h∗(f,PknαO)

p(knαO)
,

≤ hd∗(f,JαO).

The other inequality is obtained by considering αO and α−1 in place of O and α. �
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Lemma 6. For any O ∈ D1 and O′ ∈ D with O ⊂ Int(O′), we have

hd∗(f,JO) ≤ hd∗(f,O) ≤ p(O′)hd∗(f,JO′).

Proof. As JO ∈ E(O) the inequality hd∗(f,JO) ≤ hd∗(f,O) follows from the definitions. Let

now J ∈ E(O). For n large enough we have J̃n ⊂ Int(O′), therefore Jn ⊂ p(Jn)
1
d−1O′. We

conlude that

hd∗(f,J ) ≤ lim sup
n

p
(
p(Jn)

1
d−1O′

)
p(Jn)

hd∗(f,JO′),

≤ p(O′)hd∗(f,JO′).

�

For O ∈ D1 the origin belongs to Int(O) so that αO ∈ D and O ⊂ Int(αO) for any α > 1.
Moreover we have hd∗(f,JαO) = hd∗(f,JO) by Lemma 5. Together with Lemma 6 we get
immediately :

Corollary 12.

∀O ∈ D1, hd∗(f,O) = hd∗(f,JO).

Corollary 13.

O 7→ hd∗(f,O) is continuous on D1.

Convex d-polytopes are dense in D. Therefore we get with P being the collection of convex
d-polytopes with the origin in their interior set :

Corollary 14.

sup
O∈D1

hd∗(f,O) = sup
P∈P

hd∗(f,JP ).

However we will see that the supremum is not always achieved. We prove now a formula
for the rescaled entropy of a power.

Lemma 7.

∀O ∈ D1 ∀k ∈ N, hd∗(fk, O) = khd∗(f,O).

Proof. Let O ∈ D1 and J = (Jn)n ∈ E(O). Let Jkn = Jn⊕ I ⊕ · · · ⊕ I︸ ︷︷ ︸
k times

for all n. The sequence

J k = (Jkn)n belongs also to E(O). Moreover the partition PJkn is finer than
∨k−1
l=0 f

−lPJn .
Therefore

h∗(f
k,PJn) ≤ kh∗(f,PJn) = h∗

(
fk,

k−1∨
l=0

f−lPJn

)
≤ h∗(fk,PJkn)

and we then obtain

hd∗(f
k,J ) ≤ khd∗(f,J ) ≤ hd∗(fk,J k).

We conclude by taking the supremum in J ∈ E(O). �

Remark 15. Clearly we have hdµ(f) ≤ hdtop(f) for any µ ∈ M(f) but we ignore if a general
variational principle holds true.
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5.4. A first upperbound for the rescaled entropy. Let (X, f) be a cellular automaton
with domain I. We relate the entropy of PJ with the entropy of P∂±J and we prove an
upperbound for the rescaled entropy hdtop(f,O) in term of the first I-relative quermass integral
of O with I being the convex hull of I ′.

Lemma 8. For any bounded subset J of Rd, we have

h∗(f,PJ) = h∗(f,P∂−I J
) and h∗(f,PJ) ≤ h∗(f,P∂+

I J
).

Proof. The inequality h∗(f,PJ) ≥ h∗(f,P∂−J) follows directly from the inclusion ∂−J ⊂ J .
By definition of the domain I and the erosion J 	 I, we have PJ > f−1PJ	I . Therefore we

get f−1PJ ∨ PJ = f−1P∂−J ∨ PJ and then by induction PJ ∨
∨k−1
l=0 f

−lP∂−J =
∨k−1
l=0 f

−lPJ
for all k. We conclude that :

h∗(f,PJ) = lim
k

1

k
H∗(f,

k−1∨
l=0

f−lPJ),

≤ lim
k

1

k

(
H∗ (PJ) +H∗

(
k−1∨
l=0

f−lP∂−J

))
,

≤ h∗(f,P∂−J).

We also have
PJ ∨ P∂+J > PJ⊕I > f−1PJ .

Therefore we get now by induction on k

PJ ∨
k−2∨
l=0

f−lP∂+J >

k−1∨
l=0

f−lPJ .

This implies h∗(f,P∂+
I J

) ≤ h∗(f,PJ).

�

Proposition 16. For any O ∈ D1,

hdtop(f,O) ≤ VI(O) log |A|.

Proof. Recall that

hdtop(f,O) = hdtop(f,JO),

= lim sup
n

htop(f,PnO)

p(nO)
.

Then by applying Lemma 8 we obtain

hdtop(f,O) ≤ lim sup
n

htop(f,P∂±nO)

p(nO)
,

≤ lim sup
n

]∂±nO log |A|
p(nO)

.

For all k ∈ N \ {0} we let Ik be the domain of fk and we denote by Ik the convex hull of
I ′k = Ik ∪ {0}. Clearly we have Ik ⊂ I ⊕ · · · ⊕ I︸ ︷︷ ︸

k times

, therefore Ik ⊂ kI. By Lemma 2, we get for

some constant c = c(d) :

hdtop(f
k, O) ≤ (VIk(O) + c) log |A|,

≤ (VkI(O) + c) log |A|,
≤ (kVI(O) + c) log |A|.
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But by Lemma 11 we have hdtop(f
k, O) = khdtop(f,O), so that we finally conclude when k

goes to infinity

hdtop(f,O) ≤ VI(O) log |A|.

�

6. Ruelle inequality

Recall (X,σ) denotes a Zd-subshift. The topological entropy of σ is defined for any Fölner
sequence L = (Ln)n (see e.g. [22]) as

htop(σ) = lim sup
n

Htop(PLn)

|Ln|
.

Lemma 9. For all ε > 0 there exists c > 0 such that we have for any K ⊂ J convex bodies:

Htop(PJ\K) ≤ (] J \K + cp(J ⊕ C)) · (htop(σ) + ε).

Proof. Let ε > 0. As the sequence of cubes C = (Cn)n defined by Cn = [−n, n[d∩Zd is a

Fölner sequence, there is a positive integer m such that
Htop(PCm )
|Cm| < htop(σ) + ε. Then for

some c = c(m) > 0 we may cover Zd ∩ (J \K) by a family F at most ]J\K+cp(J⊕C)
|Cm| disjoint

translated copies of Cm. Indeed if Rm denotes a partition of Rd into translated copies of
Cm, then any atom A of Rm with Zd ∩ A ∩ (J \K) 6= ∅ either satisfies Zd ∩ A ⊂ J \K or

Zd ∩A ∩
(
∂−CmJ ∪ ∂

−
Cm
K
)
6= ∅. Clearly the number of A’s in the first case is less than ]J\K

|Cm| ,

whereas the numbers of atoms A satisfying the second condition is less than ]∂−CmJ+ ]∂−CmK.
Arguing as in the proof of Proposition 5, this last term is less than c (p(J ⊕ C) + p(K ⊕ C))
for some constant c depending on m. As K is contained in J we have p(J ⊕ C) ≤ p(K ⊕ C).

Therefore

Htop(PJ\K) ≤ (] J \K + 2cp(J ⊕ C))
Htop (PCm)

|Cm|
,

≤ (] J \K + 2cp(J ⊕ C)) · (htop(σ) + ε).

�

We refine now the inequality obtained in Proposition 16 at the level of invariant measures.
We recall that χO denotes the Lyapunov exponent of f with respect to O as defined at the
end of Section 4.

Lemma 10.

∀µ ∈M(f), hµ(f,O) ≤ htop(σ)

∫
χO dµ.

Proof. For any convex domain J and any µ ∈M(f) we have

hµ(f,PJ) ≤ Hµ(f−1PJ |PJ),

≤
∑
A∈PJ

µ(A)HµA(f−1PJ).
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Fix ε > 0 and let c be as in Lemma 9. Then if (KA)A∈PJ is a family of convex bodies in∏
A∈PJ Ef (A, J) with KA ⊂ J for all A we obtain

hµ(f,PJ) ≤
∑
A∈PJ

µ(A)HµA(f−1PJ\KA),

≤
∑
A∈PJ

µ(A)Htop(PJ\KA),

≤
∑
A∈PJ

µ(A) (] J \KA + cp(J ⊕ C)) · (htop(σ) + ε).

By choosing KA with ] J \KA minimal we obtain

hµ(f,PJ) ≤ (htop(σ) + ε) ·
(∫

grJf dµ+ cp(J ⊕ C)

)
.

Therefore we have for any convex exhaustion J = (Jn)n (recall that p(Jn⊕C) ∼n p(Jn)) :

hdµ(f,J ) = lim sup
n

hµ(f,PJ)

p(Jn)
,

≤ (htop(σ) + ε) ·
(

lim sup
n

∫
grJnf

p(Jn)
dµ+ c

)
.

By Proposition 5 we have for all x ∈ X

sup
n∈N

grJnf(x)

p(Jn)
≤ sup
n∈N

]∂−Jn
p(Jn)

< +∞.

We may therefore apply Fatou’s Lemma to the sequence of functions
(
− grJnf

p(Jn)

)
n

:

lim sup
n

∫
grJnf

p(Jn)
dµ ≤

∫
lim sup

n

grJnf

p(Jn)
dµ,

then

hdµ(f,J ) ≤ (htop(σ) + ε)

(∫
grJ f dµ+ c

)
.

By taking the supremum over J ∈ E(O) we get

hdµ(f,O) ≤ (htop(σ) + ε)

(∫
grOf dµ+ c

)
.

By Lemma 7 we have
hdµ(f

k,O)

k = hdµ(f,O) for any k. Apply the above inequality to fk :

hdµ(f,O) ≤ (htop(σ) + ε)

(∫
grOf

k

k
dµ+

c

k

)
.

When k goes to infinity and then ε goes to zero, we conclude hdµ(f,O) ≤ htop(σ)
∫
χO dµ.

�

7. Entropy formula for permutative CA

The cellular automaton f is said permutative at i ∈ Zd if for all pattern P on I \ {i}
and for all a ∈ A there is b ∈ A such that the pattern P ib on I ∪ {i} given by the completion
of P at i by b satisfies F (P ib ) = a, in particular i belongs to the domain I of f . The CA is
said permutative when it is permutative at the nonzero extreme points of the convex hull I
of I ′ = I ∪ {0} (these points lie in I). The algebraic CA as described in the introduction are
permutative.
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Proposition 17. The topological rescaled entropy of a permutative CA f on Xd is given by

hdtop(f) = RI′ log |A|.

The sets I ′ and I have the same smallest bounding sphere, thus RI′ = RI. Theorem 1,
stated in the introduction, follows from Proposition 17.

Question. For a permutative CA, the uniform measure λZ
d

with λ being the uniform measure
on A is known to be invariant [23]. Does the uniform measure maximize the rescaled entropy?

Recall that for any k ∈ N \ {0} we denote by Ik the domain of fk and Ik the convex hull
of I ′k = Ik ∪ {0}. In the following we also let C(P,L) = {(xi)i∈Zd ∈ X, xj = pj ∀j ∈ L} be
the cylinder associated to the pattern P = (pj)j∈L ∈ AL on L ⊂ Zd. We also write C(P ) for
this cylinder when there is no confusion on L.

Lemma 11. For any permutative CA f and any k ∈ N \ {0}, the CA fk is also permutative
and

Ik = kI.

Proof. As already observed, the inclusion Ik ⊂ kI holds for any CA (not necessarily permuta-
tive). We will show k ex(I) ⊂ I ′k, which implies together with Ik ⊂ kI the equality Ik = kI. Let
i ∈ ex(I) \ {0} ⊂ I. For a fixed k we prove by induction on k that fk is permutative at ki, in
particular ki ∈ I ′k. Let P be a pattern on Ik \{ki} and let a ∈ A. Since we have Ik ⊂ Ik−1⊕I,
we may complete P by a pattern Q on (Ik−1 ⊕ I) \ {ki}. By induction hypothesis, (k − 1)i
lies in ex(Ik−1) and i lies in ex(I), therefore ki does not belong to Ik−1⊕ (I \ {i}), so that we
have Ik−1 ⊕ (I \ {i}) ⊂ (Ik−1 ⊕ I) \ {ki}. Therefore there is a pattern R on I \ {i} such that
fk−1C (Q, (Ik−1 ⊕ I) \ {ki}) is contained in the cylinder C(R, I \ {i}). As f is permutative
at i there is b ∈ A with F (Rib) = a or in other terms f

(
C(Rib, I)

)
⊂ C (a, {0}). Since fk−1

is permutative at (k − 1)i, we may find c ∈ A with fk−1
(
C(Qkic , Ik−1 ⊕ I)

)
⊂ C (b, {i}).

Therefore we get

fk
(
C(Qkic , Ik−1 ⊕ I)

)
⊂ f

(
C(Rib, I)

)
⊂ C (a, {0}) .

But Ik is the domain of fk and P is the restriction of Q to Ik \ {ki}, so that we also have
fk
(
C(P kic , Ik)

)
⊂ C (a, {0}), i.e. fk is permutative at ki. �

For a convex d-polytope J and a face F of J we consider the subset of ∂−I J given by

∂−I F := ∂−I J ∩ T
+
F J(−hI(NF )). The sets ∂−I F for F ∈ F(J) are covering ∂−I J but do not

define a partition in general. For any F ∈ F(J) we let uF ∈ ex(I) ⊂ I ′ with uF ·NF = hI(N
F )

and we also let dF be the the Euclidean distance to TF . Then for j ∈ Zd∩∂−I J we let Fj be a

face of J such that dFj (j+u
Fj ) = −dFj (j)+uFj ·NFj is maximal among faces F with j ∈ ∂−I F .

We consider then a total order ≺ on Zd ∩ ∂−I J such that i ≺ j if dFi(i+ uFi) < dFj (j + uFj ).
We also let FI(J) be the subset of F(J) given by faces F for which uF is uniquely defined.
We denote by ∂⊥I J the subset of ∂−I J given by

∂⊥I J :=
⋃

F∈FI(J)

∂−I F.

Lemma 12. With the above notations, let j ∈ Zd ∩ ∂⊥I J . Then

∀k ∈ N, j + kuFj /∈ {j′, j′ ≺ j} ⊕ kI.

Proof. We argue by contradiction : there are j′ ≺ j and u ∈ I with j + kuFj = j′ + ku.
Observe that

dFj (j + kuFj ) = dFj (j + uFj ) + (k − 1)uFj ·NFj ,

dFj (j
′ + ku) = dFj (j

′ + u) + (k − 1)u ·NFj .
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We will show that the equality between these two distances implies u = uFj , therefore j = j′.
Indeed we have

dFj (j
′ + u) ≤ sup

v∈ex(I)
dFj (j

′ + v), u ·NFj ≤ sup
v∈ex(I)

v ·NFj ,

≤ dFj′ (j
′ + uFj′ ), ≤ hI(NFj ),

dFj (j
′ + u) ≤ dFj (j + uFj ) u ·NFj ≤ uFj ·NFj ,

therefore u ·NFj = uFj ·NFj , and finally u = uFj as j belongs to Zd ∩ ∂⊥I J . �

For a partition P of X and a positive integer k, we write Pk to denote the iterated partition∨k−1
l=0 f

−lP in order to simplify the notations.

Lemma 13. Let J be a convex d-polytope and let k, n be positive integers. For any Ak ∈ PkJ
and any pattern P on Zd ∩ ∂⊥I J , there is w ∈ Ak such that fkw belongs to C(P,Zd ∩ ∂⊥I J).

Proof. For any j ∈ ∂⊥I J we let Pj be the restriction of P = (pl)l∈∂⊥J to {j′, j′ ≺ j}. We
show now by induction on j ∈ Zd ∩ ∂⊥J that there is w ∈ Ak with fkw ∈ C(Pj). By Lemma
11 the CA fk is permutative at kuFj so that we may change the (j + kuFj )th-coordinate of
w to get w′ ∈ X with (fkw′)j = pj . Moreover the j′-coordinates of fkw for j′ ≺ j only
depends on the coordinates of w on {j′, j′ ≺ j} ⊕ kI so that by Lemma 12 we still have
fkw′ ∈ C(Pj , {j′, j′ ≺ j}), thus fkw′ ∈ C(Pj′′) with j′′ being the successor of j for ≺ in
Zd ∩ ∂⊥J . �

Lemma 14. Let T ′ and T ′R, R > 0 be the polytopes associated to I as defined in Subsection
3.5. We have

F(T ′) = FI(T
′)

and

∀R > 0, F1(T ′R) ⊂ FI(T
′
R).

Proof. Let F ∈ F(T ′) or F ∈ F1(T ′R). Such a face F is tangent to SI′ at some u ∈ ex(I) with
u ·NF = hI(N

F ). Then any v with v ·NF = hI(N
F ) belongs to TF . But TF ∩ I ⊂ TF ∩SI′ =

{u}, therefore we have necessarily uF = u.
�

We are now in a position to prove Proposition 17.

Proof of Proposition 17. The inequality hdtop(f) ≤ RI′ log |A| follows immediately from Propo-
sition 16 and Proposition 7. By Lemma 13 we have for any convex d-polytope O and any
positive integer n

∀Ak ∈ PknO, ]{Ak+1 ∈ Pk+1
nO , Ak+1 ⊂ Ak} ≥ ]∂⊥nO.

Consequently we have

htop(f,PnO) ≥ ]∂⊥nO log |A|,

hdtop(f,JO) ≥ lim sup
n

]∂⊥nO

nd−1p(O)
log |A|.

We first assume that SI = SI′ is nondegenerated. Let T ′ be the dual polytope of a
generating polytope T . Note that T ′ is a convex body with nonempty interior containing 0
(but the origin does not lie necessarily in its interior set). By Lemma 14 we have F(T ′) =
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FI(T
′), therefore F(nT ′) = FI(nT

′) and ∂⊥nT ′ = ∂−nT ′ for all n. Applying then Lemma 2
we get for some constant c = c(d) :

hdtop(f,JT ′) ≥ lim sup
n

]∂−nT ′

nd−1p(T ′)
log |A|,

≥ VI(T
′)

p(T ′)
log |A| − c.

Then it follows from Proposition 7 that :

hdtop(f,JT ′) ≥ RI log |A| − c.

For any positive integer k the above equality also holds for fk and Ik in place of f and I.
Moreover we have Ik = kI according to Lemma 11, so that we get together with the power

formula of Lemma 7 and T̃ ′ = p(T ′)−
1
d−1T ′ ∈ D1 :

hdtop(f, T̃
′) =

hdtop(f
k, T̃ ′)

k
,

≥ RIk
k

log |A| − c

k
,

≥ RkI
k

log |A| − c

k
,

≥ RI log |A| − c

k
,

hdtop(f, T
′) ≥ RI′ log |A|.

This conclude the proof in the nondegenerated case.
We deal now with the degenerated case. By Lemma 14 we have for all R > 0 with the

notations of Subsection 3.5 :

hdtop(f,JT ′R) ≥ lim sup
n

]∂−nT ′R −
∑
F∈F2(T ′R) ]∂

−nF

p(nT ′R)
log |A|.

But for F ∈ F2(T ′R) we have

]∂−nF ≤ V (∂−nF ⊕ C),

= nd−1 diam(I)O(Rl−1)

Since limR→∞
p(T ′R)
Rl

= Hd−l(L′) > 0 and |F2(T ′R)| = 2l, we get

lim sup
n

∑
F∈F2(T ′R) ]∂

−nF

p(nT ′R)
= diam(I)O(R−1).

Together with Proposition 2 we get for some constant c = c(d) :

hdtop(f,JT ′R) ≥
(
VI(T

′
R)− c− diam(I)O(R−1)

)
log |A|.
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We conclude as in the degenerated case by using the power rule. Fix ε > 0 and let k > cε−1.
We obtain finally

hdtop(f, T̃
′
R) =

hdtop(f
k, T̃ ′R)

k
,

≥
(
VIk(T ′R)

kp(T ′R)
− ε− diam(Ik)

k
O(R−1)

)
log |A|,

≥
(
VI(T

′
R)

p(T ′R)
− ε− diam(I)O(R−1)

)
log |A|,

R→+∞−−−−−→ (RI′ − ε) log |A|.
�

8. Rescaled topological entropy for endomorphisms of Zd-actions

Let X be a compact metric space endowed with a Zd-action τ . A discrete system (N-
action) f : X → X is called an endomorphism of (X, τ) when f commutes with the Zd-action
τ . We may define the rescaled topological entropy for any endomorphism f of a Zd-action
(X, τ) as follows. For an open (finite) cover U of X and any convex exhaustion J = (Jn)n
we first let

hτtop(f,U ,J ) = lim sup
n

htop(f,
∨
k∈Jn∩Zd τ

−kU)

p(Jn)
,

hτtop(f,J ) = sup
U
hτtop(f,U ,J ).

Then for any O ∈ D1

hτtop(f,O) = sup
J∈E(O)

hτtop(f,J )

and

hτtop(f) = sup
U,J

hτtop(f,U ,J )

(
= sup
J
hτtop(f,J ) = sup

O∈D1

hτtop(f,O)

)
.

Lemma 15. The rescaled entropies hτtop(f), hτtop(f,O) and hτtop(f,J ) are invariant under

conjugacy for the N-action of f and the Zd-action of τ .

Proof. Clearly it is enough to consider hτtop(f,J ) for some convex exhaustion J = (Jn)n. Let

ψ : X → Y be an homeomorphism. We check that hτtop(f,J ) = hτ
′

top(g,J ) with g = ψ◦f ◦ψ−1
being the endomorphism of the Zd-action τ ′ on Y given by τ ′ = ψ ◦ τ ◦ ψ−1. For any open
cover U of X we have with V = ψ(U) :

hτtop(f,U ,J ) = lim sup
n

htop(f,
∨
k∈Jn∩Zd τ

−kU)

p(Jn)
,

= lim sup
n

htop(g,
∨
k∈Jn∩Zd τ

′−kV)

p(Jn)
,

= hτ
′

top(g,V,J ).

The map U 7→ ψ(U) is a bijection between open covers of X and Y . Therefore we get

hτtop(f,J ) = hτ
′

top(g,J ).
�

Remark 18. (i) If Y is a a compact subset of X invariant under f and τ , then the re-
striction fY of f to Y satisfies hτtop(fY ,J ) ≤ hτtop(f,J ) for any convex exhaustion
J .
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(ii) By following straightforwardly the proofs in Section 5.3 we get again hτtop(f,O) =

hτtop(f,JO) and hτtop(f
k, O) = khτtop(f,O) for any k ∈ N and any O ∈ D1.

Let τ1, · · · , τd be the commuting transformations on X generating the Zd-action τ , i.e.
τk = τk11 ◦· · ·◦τ

kd
d for any integer d-tuple k = (k1, · · · , kd). For an integer matrix A = (aij)i,j ∈

Md(Z) with non-zero determinant, we let τA be the Zd-action generated by τ l1 , · · · , τ ld with
l1, · · · , ld being the columns of A. Then τkA = τAk for any integer d-tuple k. Let Bd be the
unit Euclidean ball of Rd.
Lemma 16. With the previous notations, we have for any O ∈ D1 :

hτAtop(f,O) = det(A)hτtop(f, ÃO)

∫
hA−1Bd dσO.

Proof. Firstly we observe that p (AJ) = det(A)
∫
hA−1Bd dσJ for any convex domain J . In-

deed, it follows from Proposition 3 that :

p (AJ) = lim
ρ→0

V (AJ ⊕ ρBd)− V (AJ)

ρ
,

= lim
ρ→0

V (A(J ⊕ ρA−1Bd)− V (AJ)

ρ
,

= det(A) lim
ρ→0

V (J ⊕ ρA−1Bd)− V (J)

ρ
,

= det(A)

∫
hA−1Bd dσJ .

For any subset J of Rd and x ∈ J there is y ∈ (J ⊕ C) ∩ Zd with ‖x − y‖ ≤
√
d. In

particular we have AJ ∩ Zd ⊂ BJ := {−d
√
d|||A|||e, · · · ,−d

√
d|||A|||e} ⊕A

(
(J ⊕ C) ∩ Zd

)
.

Let U be an open cover of X and put UA =
∨
|k|≤d

√
d|||A|||e τ

−kU . Let J ∈ E(O). We recall

that J ⊕C := (Jn⊕C)n defines a convex exhaustion in E(O) with p(Jn⊕C) ∼n p(Jn). Then
we have :

hτAtop(f,UA,J ⊕ C) = lim sup
n

htop(f,
∨
k∈(Jn⊕C)∩Zd τ

−k
A UA)

p(Jn ⊕ C)
,

= lim sup
n

htop(f,
∨
k∈A((Jn⊕C)∩Zd) τ

−kUA)

p(Jn)
,

= lim sup
n

htop(f,
∨
k∈BJn

τ−kU)

p(Jn)
,

≥ lim sup
n

htop(f,
∨
k∈AJn∩Zd τ

−kU)

p(Jn)
,

≥ det(A) lim sup
n

(
htop(f,

∨
k∈AJn∩Zd τ

−kU)

p(AJn)

∫
hA−1Bd dσJ̃n

)
,

≥ det(A)hτtop(f,U , AJ )

∫
hA−1Bd dσO.

As the map J = (Jn)n 7→ AJ = (AJn)n is a bijection from E(O) to E(ÃO), we get by
taking the supremum over U and J ∈ E(O) :

hτAtop(f,O) ≥ det(A)hτtop(f, ÃO)

∫
hA−1Bd dσO.

In the same way the other inequality is obtained (more easily) by observing that AJ ∩ Zd ⊃
A(J ∩ Zd) for any subset J . �



RESCALED ENTROPY OF CELLULAR AUTOMATA 21

For A = k Id with k ∈ N we get hτAtop(f,O) = kd−1hτtop(f, ÃO) and therefore hτAtop(f) =

kd−1hτtop(f). In particular the rescaled entropy may be not invariant under topological con-
jugacy of the N-action of the endomorphism f when the conjugacy does not preserve the
Zd-action.

The Zd-action (X, τ) is said expansive when there is an open cover U such that the cover⋂
k∈Zd τ

−kU is the partition into singletons. Such an open cover U is called a τ -generator.

Lemma 17. Assume (X, τ) is expansive and let U be a τ -generator. Then for any O ∈ D1

hτtop(f,O) = sup
J∈E(O)

hτtop(f,U ,J ).

Proof. Let V be an open cover of X. There is a bounded subset I of Zd such that the open
cover

∨
k∈I τ

−kU is finer that V. Let J = (Jn)n ∈ E(O) for O ∈ D1. Then we get :

hτtop(f,U ,J ⊕ I) = lim sup
n

htop(f,
∨
k∈(Jn⊕I)∩Zd τ

−kU)

p(Jn ⊕ I)
,

= lim sup
n

htop
(
f,
∨
k∈Jn∩Zd τ

−k(
∨
l∈I τ

−lU)
)

p(Jn)
,

≥ lim sup
n

htop(f,
∨
k∈Jn∩Zd τ

−kV)

p(Jn)
,

≥ hτtop(f,V,J ).

By taking the supremum over convex exhaustions J ∈ E(O) and open covers V of X, we
get supJ∈E(O) h

τ
top(f,U ,J ) ≥ hτtop(f,O). This concludes the proof of the lemma as the other

inequality follows straightforwardly from the definition of hτtop(f,O). �

For a CA we recover the definition of rescaled entropy of Section 5 by considering the
generator given by the zero-coordinate partition.

An algebraic Zd-action τ is a Zd-action by automorphisms of a compact abelian group
X. By Pontryagin duality, there is a one-to-one correspondence between algebraic Zd-actions

and modules M over the ring Rd = Z[u±11 , · · · , u±1d ]. The Zd-shift on Xp = (Fp)Z
d

(resp.

X∞ = (R/Z)Z
d

) is associated to the module M = X̂p = Rd / < p > with p a rational prime

(resp. M = X̂∞ = Rd). Then algebraic endomorphisms of these Zd-actions, i.e. group
homomorphisms f : X → X commmuting with the Zd-action, are given by algebraic CA. As
a consequence of Theorem 1 we get :

Corollary 19. Let f 6= ± Id, 0 be an algebraic CA on X∞. Then we have

hdtop(f) = +∞.

Proof. For some finite family (ai)i∈I in Z∗ we have :

∀(xj)j ∈ (R/Z)
Zd
, f((xj)j) =

(∑
i∈I

aixi+j

)
j

.

We first consider the case I 6= {0}. Then for some arbitrarily large rational prime p, the

domain of the algebraic CA fp on (Fp)Z
d

associated to the family (ai)i∈I in Fp is also non

trivial and therefore hdtop(fp) ≥
log p
2 . But (Xp, fp) is conjugated for the N- and Zd-actions to

the subsystem (Y, fY ) of (X∞, f) with Y =
(

1
pZ/Z

)Zd
⊂ X∞. By Lemma 15 and Remark

18 (i) we conclude hdtop(f) = +∞.
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Finally assume I = {0} and a0 6= ±1. Let fa0 be the ×a0 circle map. We consider an open

cover U of R/Z with htop(fa0 ,U) ' htop(fa0) = log |a0|. Let V = U × (R/Z)Z
d\{0} be the

induced zero-coordinate cover of X∞. Then we have for any convex exhaustion J = (Jn)n :

htop(f,
∨

k∈Jn∩Zd
σ−kV) ' ]Jnhtop(fa0),

' ]Jn log |a0|,

hdtop(f,V,J ) = lim sup
n

htop(f,
∨
k∈Jn∩Zd σ

−kV)

p(Jn)
,

= log |a0| lim sup
n

]Jn
p(Jn)

= +∞.

Note that we clearly have hdtop(f) = 0 for a0 ∈ {±1} and I = ∅ (f ≡ 0). �

Question. Does the formula of the rescaled entropy for algebraic CA obtained in Theorem
1 generalize to algebraic endomorphisms of other Zd-actions (associated to modules M 6=
Rd, Rd / < p >) ?

Remark 20. We only deal in this last section with the generalization of the rescaled topo-
logical entropy, but one may also define similarly a measure theoretical rescaled entropy for
general endomorphisms of Zd-actions.
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