FMA-51051-EP 2024-2025

Contrôle Durée 3h

Documents autorisés : polycopié, notes de cours et PC, dictionnaires.

Il n'est pas nécessaire de traiter toutes les questions pour avoir une très bonne note...

Exercice 1.

Soit β le nombre d'or, i.e. $\beta > 1$ et $\beta^2 = \beta + 1$. On pose

$$f: [0,1] \to [0,1],$$
$$x \mapsto \beta x \pmod{1}$$

On considère la mesure $\mu = \int k \ dx$ de densité k par rapport à la mesure de Lebesgue sur [0,1] définie par

$$k(x) = \frac{1}{\beta^{-1} + \beta^{-3}} \text{ pour } x \in [0, \beta^{-1}],$$

$$k(x) = \frac{1}{\beta(\beta^{-1} + \beta^{-3})} \text{ pour } x \in [\beta^{-1}, 1].$$

1. Vérifier que μ est une mesure de proba f-invariante.

Solution: C'est bien une probabilité. Pour tout Borel $A \subset [0, \beta^{-1}]$ on a $f^{-1}A = \beta^{-1}A \coprod (\beta^{-1} + \beta^{-1}A)$ et donc $\mu(f^{-1}A) = Leb(A)\beta^{-1}\frac{1+\beta^{-1}}{\beta^{-1}+\beta^{-3}} = \frac{Leb(A)}{\beta^{-1}+\beta^{-3}} = \mu(A)$. Enfin si $A \subset [\beta^{-1}, 1]$, on a $f^{-1}A = \beta^{-1}A \subset [0, \beta^{-1}]$ et donc $\mu(f^{-1}A) = Leb(A)\beta^{-1}\frac{1}{\beta^{-1}+\beta^{-3}} = \mu(A)$.

2. On note P la partition $P = \{[0, \beta^{-1}], [\beta^{-1}, 1]\}$. Justifiez que P est génératrice.

Solution: On vérifie facilement par récurence que $diam(P^n) \leq \beta^{-n}$.

3. Montrer que le cardinal de $P^n = \bigvee_{0 \le k < n} f^{-k} P$ vérifie pour tout entier $n \in \mathbb{N} \setminus \{0\}$:

$$\sharp P^{n+2} = \sharp P^{n+1} + \sharp P^n$$

<u>Indications</u>: On pourra remarquer que pour $A \in P^n$, on a (aux extrémités près) soit $f^n(A) = (0, 1)$, soit $f^n A = (0, \beta^{-1})$.

Solution: On note

$$P_0^n = \left\{ A = \bigcap_{0 \le k < n} f^{-k} A_k \in P^n, \ A_{n-1} = [0, \beta^{-1}] \right\}$$

et

$$P_1^n = \left\{ A = \bigcap_{0 \le k < n} f^{-k} A_k \in P^n, \ A_{n-1} =]\beta^{-1}, 1] \right\}$$

Si $A \in P_0^n$, alors $f^n A = (0,1)$ et donc il y a deux éléments de P^{n+1} qui intersecte A. Si $A \in P_1^n$, on a $f^n A = (0,\beta^{-1})$ et donc il n'y a qu'un $B \in P^{n+1}$ intersectant A et $f^n B = (0,\beta^{-1})$. Donc on a $\sharp P^{n+1} = 2\sharp P_0^n + \sharp P_1^n$ et $\sharp P_0^{n+1} = \sharp P^n$. On obtient alors

$$\begin{split} \sharp P^{n+1} &= 2 \sharp P_0^n + \sharp P_1^n, \\ &= \sharp P^n + \sharp P_0^n, \\ &= \sharp P^n + \sharp P^{n-1} \end{split}$$

4. En déduire l'entropie de μ .

Solution: D'après le cours, on a $h(\mu) = \lim_n \frac{H_{\mu}(P^n)}{n} \leq \lim_n \frac{\log \sharp P^n}{n} = \log \beta$, car la suite de Fibonacci croit expoenentiellement en β . De plus tout élément de P^n est un intervalle de longueur inférieur à β^{-n} et donc

$$H_{\mu}(P^n) = \int -\log \mu(P^n(x)) \, d\mu(x),$$

$$\geqslant C_{ste} + \int -\log Leb(P^n(x)) \, d\mu(x),$$

$$\geqslant C_{ste} + n \log \beta.$$

On en déduit que $h(\mu) = \log \beta$.

5. <u>Bonus</u>: Pour $x \in [0,1]$, on note $\Phi(x) = (x_k)_{k \in \mathbb{N}} \in \{0,1\}^{\mathbb{N}}$ avec $x_k = 0$ si $f^k x \in [0,\beta^{-1}]$ et $x_k = 1$ sinon. Identifier $\Phi_* \mu = \mu(\Phi^{-1} \cdot)$.

Solution: $\Phi_*\mu$ est une mesure invariante du sous décalage de type fini transitif de $\{0,1\}^{\mathbb{N}}$, où l'on a interdit le mot 11. Celui-ci étant d'entropie $\log \beta$, on en déduit que $\Phi_*\mu$ est la mesure d'entropie maximale, i.e la mesure de Parry, de ce SFT.

Exercice 2.

Soit (Y, σ) un sous-décalage, i.e. $Y \subset \{0, \cdots, K\}^{\mathbb{Z}}$ est fermé et vérifie $\sigma(Y) = Y$ pour le décalage σ . On rappelle que $\mathcal{L}_n(Y)$ désigne l'ensemble des mots de Y de longueur n.

1. Montrer que le sous-ensemble Y_n des suites $(x_k)_k$ de $\{0,\cdots,K\}^{\mathbb{Z}}$ telles que

$$\forall n \in \mathbb{N}^*, \ \forall k \in \mathbb{Z}, \quad x_k x_{k+1} \cdots x_{k+n-1} \in \mathcal{L}_n(Y)$$

définit un sous-décalage de type fini.

Solution: Y_n est le sous décalage de type fini, où l'on a interdit les n-mots qui ne sont pas dans $\mathcal{L}_n(Y)$.

2. Justifier succintement que $h_{top}(Y_n, \sigma) \ge h_{top}(Y, \sigma)$.

 $\textbf{Solution:} \ \ L'entropie \ topologique \ d'un \ sous-système \ est \ toujours \ inférieure \ ou \ égale \ à \ celle \ du \ système \ initiale.$

3. Montrer que $h_{top}(Y_n, \sigma) \xrightarrow{n \to +\infty} h_{top}(Y, \sigma)$.

Solution: Par le même argument qu' à la question précédente, on voit que $h_{top}(Y_n)$ décroit en n. De plus on a vu en cours que $h_{top}(Y) = \lim_n / \inf_n \frac{\log \sharp \mathcal{L}_n(Y)}{n}$. Mais $\mathcal{L}_n(Y) = \mathcal{L}_n(Y_n)$, donc pour tout $\epsilon > 0$ il existe N tel que

$$h_{top}(Y) \geqslant \frac{\log \sharp \mathcal{L}_N(Y)}{N} - \epsilon,$$

$$\geqslant \frac{\log \sharp \mathcal{L}_N(Y_N)}{N} - \epsilon,$$

$$\geqslant h_{top}(Y_N) - \epsilon.$$

Problème 1. Théorème de Kopell.

Le but de ce problème est de montrer le résultat suivant dû à Kopell.

Théorème.

Soit $f:[0,+\infty[\circlearrowleft]$ un difféomorphisme de classe C^2 avec 0 pour seul point fixe. On considère $g:[0,+\infty[\circlearrowleft]$ un difféomorphisme de classe C^1 satisfaisant $g\circ f=f\circ g$. Si g a un point fixe autre que 0, alors g est l'identité.

1. Montrer que l'on peut se ramener au cas où

$$\forall x \in]0, +\infty[, \ f(x) < x.$$

Solution: Quitte à remplacer f par f^{-1} .

On se place désormais dans ce cas et on suppose que $g(x_0) = x_0$ avec $x_0 \neq 0$.

2. Vérifier que $f^n(x_0)$ est un point fixe de g pour tout entier $n \in \mathbb{N}^*$.

Solution: Puisque f et g commutent on a $g \circ f^n(x_0) = f^n \circ g(x_0) = f^n(x_0)$.

3. Montrer que

$$f^n(x_0) \xrightarrow{n \to +\infty} 0.$$

Solution: Puisque f(x) < x pour tout x > 0, la suite $(f^n(x_0))_n$ est positive décroissante. Sa limite est un point fixe de f par continuite de f, c'est donc forcément 0.

4. En déduire que g'(0) = 1.

Solution: On a $g(f^n x_0) = f^n x_0 \xrightarrow{n \to +\infty} 0$. D'où

$$g'(0) = \lim_{n} \frac{g(f^{n}x_{0}) - g(0)}{f^{n}x_{0} - 0} = 1.$$

5. Montrer que pour tout $x \in]0, +\infty[$, il existe C(x) > 0 tel que

$$\forall y, z \in [f(x), x[, \quad \left| \frac{(f^n)'(y)}{(f^n)'(z)} \right| \leqslant C(x).$$

Solution: La fonction f étant de classe C^2 on a avec $c(x) = \sup_{y \in [0,x]} |(\log f')'(y)|$

$$\sum_{0 \leqslant k < n} \log |f'(f^k y)| - \log |f'(f^k z)| \leqslant c(x) \sum_{0 \leqslant k < n} |f^k y - f^k z|,$$

$$\leqslant c(x) \cdot x.$$

6. Montrer que pour tout y > 0 et pour tout $n, k \in \mathbb{N}^*$, on a

$$\frac{(g^k)'(y)}{(g^k)'(f^n y)} = \frac{(f^n)'(y)}{(f^n)'(g^k y)}$$

Solution: Il suffit de dériver $g^k \circ f^n = f^n \circ g^k$.

7. En déduire qu'il existe C>0 tel que pour tout $k\in\mathbb{N}^*$ et tout $y\in[f(x_0),x_0[$ on a

$$|(g^k)'(y)| \leqslant C.$$

Solution: On applique la question précédente. A k fixé le terme de droite tend vers $(g^k)'(y)$ quand n tend vers l'infini. Le terme de gauche est borné en valeur absolue par $C(x_0)$ d'après le controle de la distorsion obtenu en 3.

8. On suppose qu'il existe $z \in [f(x_0), x_0[$ tel que $g(z) \neq z$. Montrer que

$$\sup_{y \in [f(x_0), x_0]} |(g^k)'(y)| \xrightarrow{k \to +\infty} +\infty.$$

Solution: Remarquez d'abord que g préserve $[f(x_0), x_0]$. Soit]v, w[un sous intervalle maximal de $[f(x_0), x_0]$ sur lequel g n'a pas de point fixe. En particulier g(v) = v et g(w) = w. Sans perte de généralité, on peut supposer que g(y) > y pour tout $y \in]v, w[$. Alors $g^k(y) \xrightarrow{k} w > y$ avec $g(w) = w \leq x_0$. L'inégalité des accroissement finis donne

$$\left|\frac{w-v}{y-v}\right| \xleftarrow{k} \left|\frac{g^k(y)-v}{y-v}\right| = \left|\frac{g^k(y)-g^k(v)}{y-v}\right| \leqslant \sup_{z \in [f(x_0),x_0[} |(g^k)'(z)|$$

On conclut en prenant y arbitrairement proche de v.

9. Conclure la preuve du Théorème de Kopell.

Solution: Il suit de 6 et 7 que g coincide avec l'identité sur $[fx_0, x_0[$. On conclut en remplacant x_0 par f^kx_0 avec $k \in \mathbb{Z}$ puisque $\mathbb{R}^+ \setminus \{0\} = \bigcup_{k \in \mathbb{Z}} [f^{k+1}(x_0), f^k(x_0)[$.

Problème 2. Propriétés génériques des mesures ergodiques.

On considère $X = \{0,1\}^{\mathbb{Z}}$ muni du décalage σ . On rappelle que $\mathcal{M}(X,\sigma)$ désigne le compact (pour la topologie faible *) des mesures de proba boréliennes σ -invariantes. On note également $\mathcal{M}_e(X,\sigma)$ le sous-ensemble formé des mesures ergodiques (muni de la topologie induite de $\mathcal{M}(X,\sigma)$). Enfin, on appelle mesures périodiques les mesures de la forme $\frac{1}{n} \sum_{0 \le k < n} \delta_{\sigma^k x}$ avec $\sigma^n(x) = x$.

1. Donner un exemple de mesure $\mu \in \mathcal{M}_e(X, \sigma)$ d'entropie non nulle et de support total (i.e. $\mu(U) > 0$ pour tout ouvert U de X).

Solution: Il suffit de considérer la mesure de Bernoulli de parametre (1/2, 1/2).

2. Donner un exemple de mesure $\mu \in \mathcal{M}(X, \sigma)$ (pas forcément ergodique) d'entropie nulle et de support total. <u>Indications</u>: on pourra construire une telle mesure à partir de mesures périodiques.

Solution: Pour w un mot fini, on note ν_w la mesure periodique associée à la suite périodique $\cdots wwwww\cdots$. Si $(w_n)_n$ est une énumération dénombrable des mots finis alors $\nu = \sum_n \frac{1}{2^n} \nu_{w_n}$ est de support total et vérifie $h(\nu) = \sum_n \frac{1}{2^n} h(\nu_{w_n}) = 0$ car les mesures périodiques sont d'entropie nulle et car l'entropie est une fonction affine en la mesure.

3. Montrer que toute mesure ergodique est limite de mesures périodiques. <u>Indications</u>: Pour $\mu \in \mathcal{M}_e(X, \sigma)$ on pourra considérer un point générique $x \in X$ pour μ , i.e. tel que $\frac{1}{n} \sum_{0 \le k < n} \delta_{\sigma^k(x)} \xrightarrow{n \to \infty} \mu$.

Solution: Soit $x=(x_n)_n$ générique pour μ et soit ν_n la mesure périodique associé au mot fini $x_0\cdots x_n$. Alors on vérifie que $\nu_n\stackrel{n}{\to}\mu$ pour la topologie faible-*. Il suffit de montrer que $\nu_n([w])\stackrel{n}{\to}\mu([w])$ pour tout mot fini w. Pour w fixé on a lorsque n est assez grand $\mu([w])\simeq \frac{1}{n}\sharp\{0\leqslant k< n-|w|,\ x_k\cdots x_{k+|w|-1}=w\}\simeq \nu_n([w])$.

4. On rappelle que $\limsup_{\nu\to\mu}h(\nu)\leqslant h(\mu)$ pour tout $\mu\in\mathcal{M}(X,\sigma)$. Montrer que pour tout a>0, l'ensemble $\{\mu\in\mathcal{M}_e(X,\sigma),\ h(\mu)< a\}$ contient un ouvert dense de $\mathcal{M}_e(X,\sigma)$.

Solution: Si ν est une mesure périodique, elle est d'entropie nulle et donc la propriété de semicontinuité supérieure de l'entropie rappelée dans l'énoncé entraı̂ne qu'il existe un voisinage ouvert O_{ν} de ν tel que $h(\mu) < a$ pour tout $\mu \in O_{\nu}$. L'ouvert $O = \bigcup_{\nu \text{ périodique}} O_{\nu}$, qui est dense d'après la question précédente, convient.

5. Montrer que pour tout mot fini w, l'ensemble $\{\mu \in \mathcal{M}_e(X,\sigma), \ \mu([w]) > 0\}$ est un ouvert dense de $\mathcal{M}_e(X,\sigma)$, où [w] est le cylindre associé à w, i.e. $[w] = \{(x_n)_n \in X, x_0 \cdots x_{|w|-1} = w\}$.

Solution: On peut à la question 3, prendre la mesure périodique (donc ergodique) ν_n associée à la concatenation $w \cdot x_0 \cdots x_n$. On a toujours $\nu_n \xrightarrow{n} \mu$ et on a aussi $\forall n, \ \nu_n([w]) > 0$.

6. On admet que $\mathcal{M}_e(X,\sigma)$ est un espace de Baire 1 (pour la topologie induite). Montrer que les mesures ergodiques d'entropie nulle et de support total sont denses dans $\mathcal{M}_e(X,\sigma)$.

Solution: On note

$$U_n := \{ \mu \in \mathcal{M}_e(X, \sigma), \ \mu([w_n]) > 0 \}$$
$$V_n := \{ \mu \in \mathcal{M}_e(X, \sigma), \ h(\mu) < 1/n \}$$

On a vu que ces ensembles contenaient des ouverts denses de $\mathcal{M}_e(X,\sigma)$. Par la propriété de Baire, $\bigcap_n U_n \cap V_n$ est dense dans $\mathcal{M}_e(X,\sigma)$.

7. Reprendre rapidement les questions 1., 2. et 3., lorsque X est un sous décalage de type fini transitif.

Solution: La mesure de Parry est aussi de support total. De plus l'argument sur la densité des mesures périodiques s'etend facilement au cas des SFT.

¹. un espace de Baire est un espace topologique où toute intersection dénombrable d'ouverts denses est dense