DEVOIR MAISON À RENDRE AVANT LE 3 NOVEMBRE

Soit $\phi: \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ une fonction continue et soit $R_{\alpha}: x \mapsto x + \alpha$ la rotation d'angle $\alpha \notin \mathbb{Q}$ sur \mathbb{R}/\mathbb{Z} . On considère le produit semi-direct f_{ϕ} sur le tore $\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ défini comme suit : ¹

$$\forall (x,y) \in \mathbb{T}^2, \quad f_{\phi}(x,y) = (R_{\alpha}(x), y + \phi(x)).$$

On note respectivement λ_1 et λ_2 les mesures de Haar sur \mathbb{R}/\mathbb{Z} et $\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ (la mesure λ_1 est la mesure de Lebesgue induite sur \mathbb{R}/\mathbb{Z} et λ_2 est donné par le produit $\lambda_1 \times \lambda_1$).

Partie I : Cobords mesurables et unique ergodicité.

- (1) Vérifier que la mesure λ_2 est f_{ϕ} -invariante. On a vu en cours que (\mathbb{T}^2, f_{ϕ}) était uniquement ergodique si λ_2 est ergodique. Montrer que (\mathbb{T}^2, f_{ϕ}) est aussi minimal dans ce cas.
- (2) Dans la suite de cette partie on suppose que ϕ est un cobord mesuarable, i.e. il existe une fonction mesurable $\psi : \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ tel que $\phi(x) = \psi \circ R_{\alpha}(x) \psi(x)$ pour Lebesgue presque tout x. Montrer que les systèmes probabilistes $(\mathbb{T}^2, f_{\phi}, \lambda_2)$ et $(\mathbb{T}^2, R_{\alpha} \times Id_{\mathbb{R}/\mathbb{Z}}, \lambda_2)$ sont isomorphes.
- (3) Vérifiez que $(\mathbb{T}^2, R_{\alpha} \times Id_{\mathbb{R}/\mathbb{Z}}, \lambda_2)$ n'est pas ergodique et en déduire que le système topologique (\mathbb{T}^2, f_{ϕ}) n'est pas uniquement ergodique.

PARTIE II: COBORDS CONTINUS ET MINIMALITÉ.

- (1) On suppose que ϕ est un cobord continu, i.e. il existe une fonction continue $\psi : \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ satisfaisant $\phi = \psi \circ R_{\alpha} \psi$. En s'inspirant de la première partie, montrer que le système topologique (\mathbb{T}^2, f_{ϕ}) n'est pas minimal.
- (2) On s'intéresse dans la suite de cette partie à la réciproque de la question (1) sous l'hypothèse $\int \phi \ d\lambda_1 = 0$. On suppose donc que $\int \phi \ d\lambda_1 = 0$ et que (X, f_{ϕ}) n'est pas minimal. On considère un compact propre non vide K de \mathbb{T}^2 satisfaisant $f_{\phi}(K) = K$. Pour tout $x \in \mathbb{R}/\mathbb{Z}$ on pose

$$K_x := \{ y \in \mathbb{R}/\mathbb{Z}, \ (x, y) \in K \}.$$

- a) Montrer que $K_x \neq \emptyset$ pour tout x.
- b) Montrer que pour tout $x, x' \in \mathbb{R}/\mathbb{Z}$ il existe $\alpha_{x,x'} \in \mathbb{R}/\mathbb{Z}$ tel que $K_x + \alpha_{x,x'} \subset K_{x'}$. En déduire que $K_x \neq \mathbb{R}/\mathbb{Z}$ pour tout x.
- c) Puis montrer que $K_x + \alpha_{x,x'} = K_{x'}$ (on pourra vérifier que si $K_x + \beta \subset K_x$ pour un certain β alors on a en fait $K_x + \beta = K_x$).
- (3) Montrer qu'il existe $q \in \mathbb{N}^*$ tel que $\psi : x' \mapsto \alpha_{0,x'}$ définisse une application continue de \mathbb{R}/\mathbb{Z} dans $\mathbb{R}/\frac{1}{a}\mathbb{Z}$.
- (4) Vérifier que $\psi(x + \alpha) \psi(x) = \phi(x)$ pour tout x (où l'on considère ici $\phi(x)$ dans $\mathbb{R}/\frac{1}{a}\mathbb{Z}$).

1

^{1.} Par abus de notation on ne fera pas de distinction entre un nombre réel et sa classe d'équivalence dans \mathbb{R}/\mathbb{Z} ou $\mathbb{R}/\frac{1}{a}\mathbb{Z}$.

- (5) Soit un relèvement continu de ψ noté encore $\psi: \mathbb{R} \to \mathbb{R}$. Vérifier qu'il existe des entiers k et l tels que
 - la fonction $\theta : \mathbb{R} \to \mathbb{R}$, définie pour tout x par $\theta(x) = \psi(x) \frac{k}{q}x$, est 1-périodique,

 $\begin{array}{ll} \text{1-p\'eriodique,} \\ - \theta \circ R_{\alpha} - \theta + \frac{k\alpha}{q} = \psi \circ R_{\alpha} - \psi = \phi + \frac{l}{q}. \end{array}$

(6) Montrer que k = l = 0 puis conclure que ϕ est un cobord continu.

PARTIE III: ANALYSE DE FOURIER ET PETITS DIVISEURS

On rappelle tout d'abord deux résultats d'analyse de Fourier :

- i) Soit $\sum_{n\in\mathbb{Z}} a_n e^{2i\pi nx}$ une série de Fourier avec $\limsup_{|n|\to+\infty} \frac{\log |a_n|}{n} < 0$. Alors cette série définit une fonction analytique 1-périodique.
- ii) La série de Fourier $S_n \phi$ d'une fonction continue 1-périodique est Césaro sommable, i.e. $\left(\frac{1}{n} \sum_{0 \le k \le n} S_k \phi\right)_n$ converge (uniformément vers ϕ).
 - (1) Soient $(t_j)_{j\in\mathbb{N}}$ et $(s_j)_{j\in\mathbb{N}}$ deux suites réelles avec $s_j>t_j>0$ pour tout j et $\lim_j s_j=0$.
 - a) On suppose qu'il existe des entiers $0 < n_0 < n_1 < ... < n_j$ et des intervalles compacts d'intérieur non vide $\mathbb{R}/\mathbb{Z} \supset K_1 \supset K_2... \supset K_j$ tel que pour tout $0 \le l \le j$ et $x \in K_l$

$$t_{n_l} \le |1 - e^{ixn_l}| \le s_{n_l}.$$

Montrer qu'il existe un entier n_{j+1} arbitrairement grand et un intervalle compact d'intérieur non vide $K_{j+1} \subset K_j$ tel que pour tout $x \in K_{j+1}$

$$t_{n_{j+1}} \le |1 - e^{ixn_{j+1}}| \le s_{n_{j+1}}.$$

On pourra choisir n_{j+1} assez grand de sorte que $n_{j+1}K_j = \mathbb{R}/\mathbb{Z}$.

b) En déduire qu'il existe un irrationel α et une suite $(n_j)_j$ d'entiers positifs non nuls croissant arbitrairement vite tels que

$$t_{n_j} \le |1 - e^{2i\pi\alpha n_j}| \le s_{n_j}.$$

(2) On pose $s_j = e^{-j} = 2t_j$ pour tout $j \in \mathbb{N}$. On considère la fonction 1-périodique ϕ dont les coefficients de Fourier $c_n(\phi) = \int_0^1 \phi(t) e^{-2i\pi nt} dt$ vérifient $c_n(\phi) = 0$ pour $|n| \notin \{n_j, j \in \mathbb{N}\}$ et pour tout $j \in \mathbb{N}$

$$c_{n_j}(\phi) = \overline{c_{-n_j}(\phi)} = \frac{e^{-n_j}}{j} \frac{1 - e^{2i\pi n_j \alpha}}{|1 - e^{2i\pi n_j \alpha}|}.$$

- a) Montrer que ϕ est une fonction réelle analytique d'intégrale nulle (sur \mathbb{R}/\mathbb{Z} pour λ_1),
- b) Montrer que ϕ est un cobord 2 L^2 , mais pas un cobord continu.

Conclusion

Construire un difféomorphisme analytique du tore \mathbb{T}^2 minimal mais pas uniquement ergodique.

^{2.} i.e. il existe une fonction $\psi : \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ dans L^2 tel que $\phi(x) = \psi \circ R_{\alpha}(x) - \psi(x)$ pour λ_1 -presque tout x.