David Burguet
David Burguet
Home
Research
Teaching
Contact
CV
Light
Dark
Automatic
Publications
Type
Journal article
Preprint
Date
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
David Burguet
(2024).
SRB measures for partially hyperbolic diffeomorphisms with one dimensional center subbundles
. Soumis.
PDF
DOI
David Burguet
,
Dawei Yang
(2024).
SRB measures for mostly expanding partially hyperbolic diffeomorphisms via the variational approach
. Soumis.
PDF
DOI
David Burguet
(2023).
Habilitation Thesis
. 21 Juin 2023.
PDF
David Burguet
,
Ruxi Shi
(2023).
Multiplicity of topological systems
. Paru en ligne Erg.Th.Dyn.Sys.
PDF
DOI
David Burguet
,
Ruxi Shi
(2022).
Mean dimension of induced systems
. A paraitre Trans.Amer.Math.Soc.
PDF
David Burguet
(2022).
Maximal measure and entropic continuity of Lyapunov exponents For $C^r$ surface diffeomorphisms with large entropy
. Ann. Henri Poincare 25, 1485-1510 (2024).
PDF
Cite
DOI
David Burguet
(2022).
SRB measures for smooth surface diffeomorphisms
. Invent. math. 235, 1019-1062 (2024).
PDF
Cite
DOI
David Burguet
,
Ruxi Shi
(2021).
Mean dimension of continuous automata
. Paru en ligne Israel journal of Math (2023).
PDF
DOI
David Burguet
,
Ruxi Shi
(2021).
Zero dimensional and symbolic extensions for topological flows
. DCDS A 42 (2022) n.3 p. 1105-1126.
PDF
Cite
DOI
David Burguet
(2020).
Rescaled entropy of cellular automata
. Nonlinearity 34 (2021), no. 7, 4897-4922.
PDF
Cite
DOI
David Burguet
,
Gang Liao
(2019).
Symbolic extensions for 3-dimensional diffeomorphisms
. Journal d’An. Math 145 (2021) n.1 p. 381-400.
PDF
Cite
DOI
David Burguet
(2018).
Symbolic extensions and uniform generators for topological regular flows
. J. Differential Equations 267 (2019), no. 7, 4320-4372.
PDF
Cite
DOI
David Burguet
(2018).
Entropy of physical measures for $C^{\infty}$ Dynamical systems
. Commun. Math. Phys. 375, 1201-1222 (2020).
PDF
Cite
DOI
David Burguet
(2017).
Topological and almost Borel universality for systems with the weak specification property
. Erg.Th.Dyn.Sys. 40 (2020), no.8, 2098-2115.
PDF
Cite
DOI
David Burguet
(2017).
Periodic expansiveness of smooth surface diffeomorphisms and applications
. J. Eur. Math. Soc. (JEMS) 22 (2020), no. 2, 413-454.
PDF
Cite
DOI
David Burguet
(2016).
Usc/fibred entropy structure and applications
. Dyn. Syst. 32 (2017), no. 3, 391-409.
PDF
Cite
DOI
David Burguet
,
Tomasz Downarowicz
(2016).
Uniform generators, symbolic extensions with an embedding, and structure of periodic orbits
. J. Dynam. Differential Equations 31, 2019, no 2, 815-852.
PDF
Cite
DOI
David Burguet
(2015).
Jumps of entropy for $C^r$ interval maps
. Fund. Math. 231 (2015), no. 3, 299-317.
PDF
Cite
DOI
David Burguet
(2014).
Embedding asymptotically expansive systems
. Monatsh. Math. 184 (2017), no. 1, 21-49.
PDF
Cite
DOI
David Burguet
,
Gang Liao
,
Jiagang Yang
(2013).
Asymptotic $h$-expansiveness rate of $C^{\infty}$ maps
. Proc. Lond. Math. Soc. (3) 111 (2015), no. 2, 381-419.
PDF
Cite
DOI
David Burguet
,
Todd FIsher
(2012).
Symbolic extensions for partially hyperbolic dynamical systems with 2-dimensional center bundle.
. Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2253-2270.
PDF
Cite
DOI
David Burguet
(2012).
Existence of measures of maximal entropy for $C^r$ interval maps
. Proc. Amer. Math. Soc. 142 (2014), no. 3, 957-968.
PDF
Cite
DOI
David Burguet
(2011).
Symbolic extensions in intermediate smoothness on surfaces
. Ann. Sci. Ec. Norm. Super. (4) 45 (2012), no. 2, 337-362.
PDF
Cite
DOI
David Burguet
(2010).
Symbolic extensions and continuity properties of the entropy
. Arch. Math. (Basel) 96 (2011), no. 4, 387-400.
PDF
Cite
DOI
David Burguet
(2010).
Quantitative Morse Sard theorem via algebraic lemma.
. C. R. Math. Acad. Sci. Paris 349 (2011), no. 7-8, 441-443.
Cite
DOI
David Burguet
(2010).
Examples of $C^r$ interval map with large symbolic extension entropy. .
. Discrete Contin. Dyn. Syst. 26 (2010), no. 3, 873-899.
PDF
Cite
DOI
David Burguet
(2009).
Symbolic extensions for nonuniformly entropy expanding maps
. Colloq. Math. 121 (2010), no. 1, 129-151.
PDF
Cite
DOI
David Burguet
,
Kevin Mcgoff
(2009).
Orders of accumulation of entropy
. Fund. Math. 216 (2012), no. 1, 1-53.
Cite
DOI
David Burguet
(2009).
$C^2$ surface diffeomorphisms have symbolic extensions
. Invent. Math. 186 (2011), no. 1, 191-236.
Cite
DOI
David Burguet
(2008).
A direct proof of the tail variational principle and its extension to maps
. Ergodic Theory Dynam. Systems 29 (2009), no. 2, 357-369.
Cite
DOI
David Burguet
(2007).
A proof of Yomdin-Gromov's algebraic lemma
. Israel J. Math. 168 (2008), 291-316.
Cite
DOI
Cite
×