Publications

(2023). Habilitation Thesis. 21 Juin 2023.

PDF

(2023). Multiplicity of topological systems . Paru en ligne Erg.Th.Dyn.Sys.

PDF DOI

(2022). Mean dimension of induced systems . A paraitre Trans.Amer.Math.Soc.

PDF

(2022). SRB measures for smooth surface diffeomorphisms. Invent. math. 235, 1019-1062 (2024).

PDF DOI

(2021). Mean dimension of continuous automata. Paru en ligne Israel journal of Math (2023).

PDF DOI

(2021). Zero dimensional and symbolic extensions for topological flows. DCDS A 42 (2022) n.3 p. 1105-1126.

PDF DOI

(2020). Rescaled entropy of cellular automata. Nonlinearity 34 (2021), no. 7, 4897-4922.

PDF DOI

(2019). Symbolic extensions for 3-dimensional diffeomorphisms. Journal d’An. Math 145 (2021) n.1 p. 381-400.

PDF DOI

(2018). Symbolic extensions and uniform generators for topological regular flows. J. Differential Equations 267 (2019), no. 7, 4320-4372.

PDF DOI

(2018). Entropy of physical measures for $C^{\infty}$ Dynamical systems. Commun. Math. Phys. 375, 1201-1222 (2020).

PDF DOI

(2017). Periodic expansiveness of smooth surface diffeomorphisms and applications. J. Eur. Math. Soc. (JEMS) 22 (2020), no. 2, 413-454.

PDF DOI

(2016). Usc/fibred entropy structure and applications. Dyn. Syst. 32 (2017), no. 3, 391-409.

PDF DOI

(2016). Uniform generators, symbolic extensions with an embedding, and structure of periodic orbits. J. Dynam. Differential Equations 31, 2019, no 2, 815-852.

PDF DOI

(2015). Jumps of entropy for $C^r$ interval maps. Fund. Math. 231 (2015), no. 3, 299-317.

PDF DOI

(2014). Embedding asymptotically expansive systems. Monatsh. Math. 184 (2017), no. 1, 21-49.

PDF DOI

(2013). Asymptotic $h$-expansiveness rate of $C^{\infty}$ maps. Proc. Lond. Math. Soc. (3) 111 (2015), no. 2, 381-419.

PDF DOI

(2012). Symbolic extensions for partially hyperbolic dynamical systems with 2-dimensional center bundle. . Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2253-2270.

PDF DOI

(2012). Existence of measures of maximal entropy for $C^r$ interval maps. Proc. Amer. Math. Soc. 142 (2014), no. 3, 957-968.

PDF DOI

(2011). Symbolic extensions in intermediate smoothness on surfaces. Ann. Sci. Ec. Norm. Super. (4) 45 (2012), no. 2, 337-362.

PDF DOI

(2010). Symbolic extensions and continuity properties of the entropy. Arch. Math. (Basel) 96 (2011), no. 4, 387-400.

PDF DOI

(2010). Quantitative Morse Sard theorem via algebraic lemma.. C. R. Math. Acad. Sci. Paris 349 (2011), no. 7-8, 441-443.

DOI

(2010). Examples of $C^r$ interval map with large symbolic extension entropy. . . Discrete Contin. Dyn. Syst. 26 (2010), no. 3, 873-899.

PDF DOI

(2009). Symbolic extensions for nonuniformly entropy expanding maps. Colloq. Math. 121 (2010), no. 1, 129-151.

PDF DOI

(2009). Orders of accumulation of entropy. Fund. Math. 216 (2012), no. 1, 1-53.

DOI

(2009). $C^2$ surface diffeomorphisms have symbolic extensions. Invent. Math. 186 (2011), no. 1, 191-236.

DOI

(2008). A direct proof of the tail variational principle and its extension to maps. Ergodic Theory Dynam. Systems 29 (2009), no. 2, 357-369.

DOI

(2007). A proof of Yomdin-Gromov's algebraic lemma. Israel J. Math. 168 (2008), 291-316.

DOI